Câu 4.36 trang 182 sách bài tập Giải tích 12 Nâng cao
Cho ...
Cho
a) Cho (z = c{ m{os}}varphi { m{ + }}isin varphi left( {varphi in R} ight)). Chứng minh rằng với mọi số nguyên (n ge 1), ta có
({z^n} + {1 over {{z^n}}} = 2cos nvarphi ,{z^n} - {1 over {{z^n}}} = 2isin nvarphi )
b) Từ câu a), chứng minh rằng
(c{ m{o}}{{ m{s}}^4}varphi = {1 over 8}left( {{ m{cos4}}varphi + 4cos 2varphi + 3} ight))
({sin ^5}varphi = {1 over {16}}left( {sin 5varphi - 5sin 3varphi + 10sin varphi } ight))
Giải
a) ({z^n} = cos nvarphi + isin nvarphi ,{1 over {{z^n}}} = cos nvarphi - isin nvarphi ) nên
({z^n} + {1 over {{z^n}}} = 2cos nvarphi ,{z^n} - {1 over {{z^n}}} = 2isin nvarphi )
(Đặc biệt ({z} + {1 over z} = 2cos varphi ,z - {1 over z} = 2isin varphi )).
b) (c{ m{o}}{{ m{s}}^4}varphi = {left[ {{1 over 2}left( {z + {1 over z}} ight)} ight]^{ - 4}} )
(= {1 over {{2^4}}}left[ {{z^4} + {1 over {{z^4}}} + C_4^1left( {{z^2} + {1 over {{z^2}}}} ight) + C_4^2} ight])
( = {1 over {{2^4}}}left( {2cos 4varphi + 4.2cos2varphi + 6} ight) )
(= {1 over 8}left( {cos 4varphi + 4cos2varphi + 3} ight))
({sin ^5}varphi = {left[ {{1 over {2i}}left( {z - {1 over z}} ight)} ight]^5})
( = {1 over {{2^5}i}}left[ {left( {{z^5} - {1 over {{z^5}}}} ight) - C_5^1left( {{z^3} - {1 over {{z^3}}}} ight) + C_5^2left( {z - {1 over z}} ight)} ight])
( = {1 over {{2^5}}}left( {2sin 5varphi - 2C_5^1sin 3varphi + 2C_5^2sin varphi } ight))
(={1 over {16}}left( {sin 5varphi - 5sin 3varphi + 10sin varphi } ight)).
Sachbaitap.com