Bài 3.53 trang 132 sách bài tập (SBT) – Hình học 12: Cho hai mặt phẳng: (P1): 2x + y + 2z +1 = 0 và (P2): 4x – 2y...
Cho hai mặt phẳng: (P1): 2x + y + 2z +1 = 0 và (P2): 4x – 2y – 4z + 7 = 0. Lập phương trình mặt phẳng sao cho khoảng cách từ mỗi điểm của nó đến (P1) và (P2) là bằng nhau. . Bài 3.53 trang 132 sách bài tập (SBT) – Hình học 12 – ÔN TẬP CHƯƠNG III – PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN ...
(P1): 2x + y + 2z +1 = 0 và (P2): 4x – 2y – 4z + 7 = 0.
Lập phương trình mặt phẳng sao cho khoảng cách từ mỗi điểm của nó đến (P1) và (P2) là bằng nhau.
. Bài 3.53 trang 132 sách bài tập (SBT) – Hình học 12 – ÔN TẬP CHƯƠNG III – PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
Cho hai mặt phẳng:
(P1): 2x + y + 2z +1 = 0 và (P2): 4x – 2y – 4z + 7 = 0.
Lập phương trình mặt phẳng sao cho khoảng cách từ mỗi điểm của nó đến (P1) và (P2) là bằng nhau.
Hướng dẫn làm bài:
Ta có: (M(x,y,z) in (P) Leftrightarrow d(M,({P_1})) = d(M,({P_2})))
(Leftrightarrow {{|2x + y + 2z + 1|} over {sqrt {4 + 1 + 4} }} = {{|4x – 2y – 4z + 7|} over {sqrt {16 + 4 + 16} }})
(Leftrightarrow 2|2x + y + 2z + 1| = |4x – 2y – 4z + 7|)
(Leftrightarrow left[ {matrix{{4x + 2y + 4z + 2 = 4x – 2y – 4z + 7} cr {4x + 2y + 4z + 2 = – (4x – 2y – 4z + 7)} cr} } ight.)
(Leftrightarrow left[ {matrix{{4y + 8z – 5 = 0} cr {8x + 9 = 0} cr} } ight.)
Từ đó suy ra phương trình mặt phẳng phải tìm là: (4y + 8z – 5 = 0) hoặc (8x + 9 = 0)