25/04/2018, 17:37

Bài 2.28 trang 92 SBT Toán Hình học 10: Trong mặt phẳng Oxy cho bốn điểm...

Trong mặt phẳng Oxy cho bốn điểm . Bài 2.28 trang 92 Sách bài tập (SBT) Toán Hình học 10 – Bài 2: Tích vô hướng của hai vec tơ Trong mặt phẳng Oxy cho bốn điểm A(3;4), B(4;1), C(2; – 3), D( – 1;6). Chứng minh tứ giác ABCD nội tiếp được trong một đường tròn. Gợi ý làm bài Muốn chứng ...

Trong mặt phẳng Oxy cho bốn điểm . Bài 2.28 trang 92 Sách bài tập (SBT) Toán Hình học 10 – Bài 2: Tích vô hướng của hai vec tơ

Trong mặt phẳng Oxy cho bốn điểm A(3;4), B(4;1), C(2; – 3), D( – 1;6). Chứng minh tứ giác ABCD nội tiếp được trong một đường tròn.

Gợi ý làm bài

Muốn chứng minh tứ giác ABCD nội tiếp được trong một đường tròn, ta chứng minh tứ giác này có hai góc đối bù nhau. Khi đó hai góc này có cô sin đối nhau.

Theo giả thiết ta có:

(eqalign{
& overrightarrow {AB} = (1; – 3),overrightarrow {AD} = ( – 4;2), cr
& overrightarrow {CB} = (2;4);overrightarrow {CD} = ( – 3;9) cr} )

Do đó:

(eqalign{
& cos (overrightarrow {AB} ,overrightarrow {AD} ) = {{overrightarrow {AB} .overrightarrow {AD} } over {left| {overrightarrow {AB} } ight|.left| {overrightarrow {AD} } ight|}} cr
& = {{1.( – 4) + ( – 3).2} over {sqrt {1 + 9} .sqrt {16 + 4} }} = {{ – 10} over {sqrt {200} }} = – {1 over {sqrt 2 }} cr} )

(eqalign{
& cos (overrightarrow {CB} ,overrightarrow {AD} ) = {{overrightarrow {CB} .overrightarrow {CD} } over {left| {overrightarrow {CB} } ight|.left| {overrightarrow {CD} } ight|}} cr
& = {{2.( – 3) + 4.9} over {sqrt {4 + 16} .sqrt {9 + 81} }} = {{30} over {sqrt {1800} }} = {1 over {sqrt 2 }} cr} )

Vì (cos (overrightarrow {AB} ,overrightarrow {AD} ) =  – cos (overrightarrow {CB} ,overrightarrow {CD} )) nên hai góc này bù nhau. Vậy tứ giác ABCD nội tiếp được trong một đường tròn.

0