01/05/2018, 21:17

[Đề + Đáp án] Toán học kì 2 lớp 9 trường THCS An Thắng: Chứng minh các điểm cùng nằm trên một đường tròn

Với thời gian 120 phút, bạn làm được bao nhiêu câu và đúng được bao nhiêu câu trong đề thi Toán 9 cuối học kì 2 lớp 9 của trường An Thắng dưới đây. (Cập nhật 24/04/2018) Bài 1. (1,5 điểm) a) Giải hệ phương trình: { 3x + 2y = 1; 3x + y = 2 b) Vẽ đồ thị hàm số : y = ¼ x 2 Bài 2. ...

Với thời gian 120 phút, bạn làm được bao nhiêu câu và đúng được bao nhiêu câu trong đề thi Toán 9 cuối học kì 2 lớp 9 của trường An Thắng dưới đây. (Cập nhật 24/04/2018)

Bài 1.  (1,5 điểm)

a) Giải hệ phương trình: { 3x + 2y = 1; 3x + y = 2

b) Vẽ đồ thị hàm số : y = ¼ x2

Bài 2. (2,5 điểm)

Cho phương trình 3x2 – 5x + m = 0

a) Giải phương trình với m = 2.

b) Xác định m để phương trình có 2 nghiệm thỏa mãn x12 – x22 = 5/9 .

Bài 3. (1,5 điểm) Trong đợt giải phóng mặt bằng làm đường quốc lộ 10, gia đình bà Hạnh được đền bù một miếng đất hình chữ nhật có chiều dài hơn chiều rộng là 4 mét. Số tiền gia đình nhận được là 120 triệu đồng với giá 2 triệu đồng 1mét vuông. Hãy tính kích thước của mảnh đất đó.

Bài 4.  (0,5 điểm)

Một hình trụ có bán kính đường tròn đáy là 6cm, chiều cao 9cm. Hãy tính;

a) Diện tích xung quang của hình trụ.

b) Thể tích hình trụ. ( Lấy π ≈ 3,142 làm tròn đến hàng đơn vị).

Bài 5. (3,0 điểm)

Từ điểm A ở bên ngoài đường tròn (O), kẻ các tiếp tuyến AM và AN với đường tròn (M, N là các tiếp điểm). Đường thẳng d đi qua A cắt đường tròn (O) tại hai điểm phân biệt B và C (O không thuộc  (d), B nằm giữa A và C). Gọi H là trung điểm của BC.

a) Chứng minh các điểm O, H, M, A, N cùng nằm trên một đường tròn.

b) Chứng minh HA là tia phân giác của góc MHN.

c) Lấy điểm E trên MN sao cho BE song song với AM. Chứng minh HE//CM.

Bài 6: (1,0 điểm)

Cho x, y là hai số thực thoả mãn x.y = 1. Chứng minh: 4/[(x + y)2] + x2 + y2 ≥ 3

Đẳng thức xảy ra khi nào ?


ĐÁP ÁN VÀ BIỂU  ĐIỂM TOÁN 9

Câu 3:

Gọi chiều dài của mảnhđất là x (m) (x > 0)

Chiều rộng của mảnhđất là x-4 (m)

Diện tích của mảnh đất là x(x-4)  (m)

Số tiền bà Hạnh nhận 120 triệu với giá 2 triệu 1 mét vuông nên diện tích đất là 120:20 = 60

Ta có phương trình: x(x-4) = 60

⇔ x2– 4x – 60 = 0

Δ’ = 4+60 = 64

x1 = 2 +8 = 10(thỏa mãn điều kiện)

x2 = 2 – 8 = -6(loại )

Vậy chiều dài mảnh đất là 10m

Chiều rộng mảnh đất là 10 – 4 = 6(m)

Câu 4:

Câu 5:

Hình vẽ: a) Ta có : ∠AMO = ∠ANO = 90(AM, AN là tiếp tuyến đường tròn của (O))

⇒ 4 điểm A, M, O ,N cùng thuộc đường tròn đường kính AO ( Quĩ tích cung chứa góc) (1)

Do H là trung điểm của BC nên ta có: ∠AHO = 900

⇒ 3 điểm A, O, H cùng thuộc đường tròn đường kính AO (tam giác vuông có đường kính đường tròn ngoại tiếp là TĐ của cạnh huyền) (2)

Từ (1) và (2) ⇒ 5 điểm A, M, H, N, O thuộc đường tròn đường kính AO

b) Theo tính chất hai tiếp tuyến cắt nhau ta có: AM = AN
⇒ DAMN cân tại A ⇒ ∠AMN = ∠ANM (3)
Do 5 điểm A, M, H, O, N cùng thuộc một đường tròn nên: ∠AHM = ∠ANM và ∠AMN = ∠AHN ( 2 góc nội tiếp cùng chắn 1 cung thì bằng nhau) (4)
Từ (3) và (4) suy ra ∠AHM = ∠AHN, HA là tia phân giác của MHN

c) Theo giả thiết AM//BE nên ∠MAC = ∠EBH (2 góc đồng vị) (5)

Do 5 điểm A,M,O,N cùng thuộc 1 đường tròn nên: ∠MAH = ∠MNH ( góc nội tiếp của cung EB)

Suy ra tứ giác EBHN nội tiếp ⇒  ∠EHB = ∠ENB
Mà ENB = MCB (2 góc nội tiếp chắn cung MB)
⇒ EHB = MCB; ⇒ EH//MC

Câu 6:

0