Câu 21 trang 102 Sách Bài Tập (SBT) Toán 9 Tập 2
Hãy tính các góc của tam giác DEF. ...
Hãy tính các góc của tam giác DEF.
Cho tam giác ABC nội tiếp trong đường tròn tâm O, biết (widehat A = {32^0}), (widehat B = {84^0}). Lấy các điểm D, E, F thuộc đường tròn tâm O sao cho AD = AB, BE = BC, CF = CA. Hãy tính các góc của tam giác DEF.
Giải
(widehat A = {1 over 2}) sđ (overparen{BC}) (tính chất góc nội tiếp)
( Rightarrow ) sđ (overparen{BC}) ( = 2widehat A = {2.32^0} = {64^0})
BC = BE (gt)
( Rightarrow ) sđ (overparen{BC}) = sđ (overparen{BE}) = 640
(widehat B = {1 over 2}) sđ (overparen{AC}) (tính chất góc nội tiếp)
( Rightarrow ) sđ (overparen{AC}) ( = 2widehat B = {2.84^0} = {168^0})
AC = CF (gt)
( Rightarrow ) sđ (overparen{CF}) = sđ (overparen{AC}) = 1680
sđ (overparen{AC}) + sđ (overparen{AF}) + sđ (overparen{CF}) = 3600
( Rightarrow ) sđ (overparen{AF}) ( = {360^0} - ) sđ (overparen{AC}) - sđ (overparen{CF}) = 3600 – 1680. 2 = 240
Trong ∆ABC ta có: (widehat A + widehat B + widehat C = {180^0})
( Rightarrow widehat {ACB} = {180^0} - left( {widehat A + widehat B} ight))
= ({180^0} - left( {{{32}^0} + {{84}^0}} ight) = {64^0})
sđ (widehat {ACB} = {1 over 2}) sđ (overparen{AB})
( Rightarrow ) sđ (overparen{AB}) ( = 2widehat {ACB} = {2.64^0} = {128^0})
AD = AB (gt)
( Rightarrow ) sđ (overparen{AD}) = sđ (overparen{AB}) = 1280
(widehat {FED} = {1 over 2}) sđ (overparen{DF}) ( = {1 over 2}) ( sđ (overparen{AD}) + sđ (overparen{AF}))
= ({1 over 2}.left( {{{128}^0} + {{24}^0}} ight) = {76^0})
(widehat {EDF} = {1 over 2}) sđ (overparen{EF}) = ({1 over 2}) ( sđ (overparen{AB}) - sđ (overparen{AF}) - sđ (overparen{BE})
= ({1 over 2}.left( {{{128}^0} - {{24}^0} - {{64}^0}} ight) = {20^0})
(widehat {DFE} = {180^0} - left( {widehat {FED} + widehat {EDF}} ight))
= ({180^0} - left( {{{76}^0} + {{20}^0}} ight) = {84^0}).
Sachbaitap.com