Bài 8 trang 143 SGK Giải tích 12
Giải bài 8 trang 143 SGK Giải tích 12. Thực hiện các phép tính sau: ...
Giải bài 8 trang 143 SGK Giải tích 12. Thực hiện các phép tính sau:
Đề bài
a) ((3 + 2i)[(2 – i) + (3 – 2i)])
b) ((4 - 3i) + {{1 + i} over {2 + i}})
c) ((1 + i)^2 – (1 – i)^2)
d) ({{3 + i} over {2 + i}} - {{4 - 3i} over {2 - i}})
Phương pháp giải - Xem chi tiết
Thực hiện các phép tính theo đúng thứ tự nhân, chia trước, công trừ sau, trong ngoặc trước, ngoài ngoặc sau.
Lời giải chi tiết
a) ((3 + 2i)[(2 – i) + (3 – 2i)]= (3 + 2i)(5 – 3i) = 21 + i)
b)
(eqalign{
& (4 - 3i) + {{1 + i} over {2 + i}} = (4 - 3i) + {{(1 + i)(2 - i)} over 5} = (4 - 3i)({3 over 5} + {1 over 5}i) cr
& = (4 + {3 over 5}) - (3 - {1 over 5})i = {{23} over 5} - {{14} over 5}i cr} )
c) ((1 + i)^2 – (1 – i)^2 = 2i – (-2i) = 4i)
d)
(eqalign{
& {{3 + i} over {2 + i}} - {{4 - 3i} over {2 - i}} = {{(3 + i)(2 - i)} over 5} - {{(4 - 3i)(2 + i)} over 5} cr
& = {{7 - i} over 5} - {{11 - 2i} over 5} = {{ - 4} over 5} + {1 over 5}i cr} )
zaidap.com