25/04/2018, 21:58

Bài 4 trang 156 sách giáo khoa Đại số và Giải tích 11: Bài 1. Định nghĩa và ý nghĩa của đạo hàm...

Bài 4 trang 156 sách giáo khoa Đại số và Giải tích 11: Bài 1. Định nghĩa và ý nghĩa của đạo hàm. 4. Chứng minh rằng hàm số Bài 4. Chứng minh rằng hàm số (f(x) = left{ matrix{ {(x – 1)^2} ext{ nếu }x ge 0 hfill cr – {x^2} ext { nếu } x < 0 hfill cr} ight.) không có đạo hàm tại ...

Bài 4 trang 156 sách giáo khoa Đại số và Giải tích 11: Bài 1. Định nghĩa và ý nghĩa của đạo hàm. 4. Chứng minh rằng hàm số

Bài 4. Chứng minh rằng hàm số 

(f(x) = left{ matrix{
{(x – 1)^2} ext{ nếu }x ge 0 hfill cr
– {x^2} ext { nếu } x < 0 hfill cr} ight.)

không có đạo hàm tại điểm (x = 0) nhưng có đạo hàm tại điểm (x = 2).

Giải:

Ta có ( mathop{lim}limits_{x ightarrow 0^{+}} f(x) = )( mathop{lim}limits_{x ightarrow 0^{+}} (x – 1)^2= 1) và ( mathop{lim}limits_{x ightarrow 0^{-}} f(x) = )(mathop{ lim}limits_{x ightarrow 0^{-}} (-x^2) = 0).

vì (mathop{ lim}limits_{x ightarrow 0^{+}}f(x) ≠ )( mathop{lim}limits_{x ightarrow 0^{-}}) nên hàm số (y = f(x)) gián đoạn tại (x = 0), do đó hàm số không có đạo hàm tại điểm (x = 0).

Ta có (mathop{ lim}limits_{Delta x ightarrow 0}) ( frac{fleft ( 2+Delta x ight )-fleft ( 2 ight )}{Delta x}) = ( mathop{lim}limits_{Delta x ightarrow 0}) ( frac{left ( 1+Delta x ight )^{2}-1^{2}}{Delta x}) = ( mathop{lim}limits_{Delta x ightarrow 0} (2 + ∆x) = 2).

Vậy hàm số (y = f(x)) có đạo hàm tại (x = 2) và (f'(2) = 2).

0