26/04/2018, 12:34

Bài 1.19 trang 16 Sách bài tập (SBT) Giải tích 12: Xác định giá trị m để hàm số sau không có cực...

Xác định giá trị m để hàm số sau không có cực trị.. Bài 1.19 trang 16 Sách bài tập (SBT) Giải tích 12 – Bài 2. Cực trị của hàm số Xác định giá trị m để hàm số sau không có cực trị. (y = {{{x^2} + 2mx – 3} over {x – m}}) Hướng dẫn làm bài: Hàm số không có cực trị khi đạo hàm của ...

Xác định giá trị m để hàm số sau không có cực trị.. Bài 1.19 trang 16 Sách bài tập (SBT) Giải tích 12 – Bài 2. Cực trị của hàm số

Xác định giá trị m để hàm số sau không có cực trị.

(y = {{{x^2} + 2mx – 3} over {x – m}}) 

Hướng dẫn làm bài:

Hàm số không có cực trị khi đạo hàm của nó không đổi dấu trên tập xác định R{m}.

Ta có: 

(eqalign{
& y = {{{x^2} + 2mx – 3} over {x – m}} cr
& y’ = {{(2x + 2m)(x – m) – ({x^2} + 2mx – 3)} over {{{(x – m)}^2}}} cr
& = {{2{x^2} – 2{m^2} – {x^2} – 2mx + 3} over {{{(x – m)}^2}}} = {{{x^2} – 2mx – 2{m^2} + 3} over {{{(x – m)}^2}}} cr} )             

Xét  g(x) = x2 – 2mx – 2m2 + 3

        ∆’g = m2 + 2m2 – 3 = 3(m2 – 1) ;

     ∆’g ≤ 0  khi – 1 ≤ m ≤ 1.

Khi – 1 ≤ m ≤ 1 thì phương trình g(x) = 0 vô nghiệm hay y’ = 0 vô nghiệm và y’  > 0 trên tập xác định. Khi đó, hàm số không có cực trị.

Khi m = 1 hoặc m = -1, hàm số đã cho trở thành y = x  + 3 (với x ≠ 1) hoặc y = x – 3 (với x ≠ – 1) Các hàm số này không có cực trị.

Vậy hàm số đã cho không có cực trị khi – 1 ≤ m ≤ 1.

0