25/04/2018, 16:42

Câu 80 trang 61 Sách bài tập (SBT) Toán 8 tập 2: Cho a > 0 và b > 0, chứng tỏ rằng...

Cho a > 0 và b > 0, chứng tỏ rằng. Câu 80 trang 61 Sách bài tập (SBT) Toán 8 tập 2 – Ôn tập chương IV – Bất phương trình bậc nhất một ẩn Cho a > 0 và b > 0, chứng tỏ rằng (left( {a + b} ight)left( {{1 over a} + {1 over b}} ight) ge 4) Giải: Ta có: (eqalign{ & ...

Cho a > 0 và b > 0, chứng tỏ rằng. Câu 80 trang 61 Sách bài tập (SBT) Toán 8 tập 2 – Ôn tập chương IV – Bất phương trình bậc nhất một ẩn

Cho a > 0 và b > 0, chứng tỏ rằng

(left( {a + b} ight)left( {{1 over a} + {1 over b}} ight) ge 4)

Giải:

Ta có:

(eqalign{  & {left( {a – b} ight)^2} ge 0  cr  &  Leftrightarrow {a^2} + {b^2} – 2ab ge 0  cr  &  Leftrightarrow {a^2} + {b^2} – 2ab + 2ab ge 2ab  cr  &  Leftrightarrow {a^2} + {b^2} ge 2ab cr} )

Vì a > 0, b > 0 nên ab ≥ 0 ( Rightarrow {1 over {ab}} > 0)

(eqalign{  & left( {{a^2} + {b^2}} ight).{1 over {ab}} ge 2ab.{1 over {ab}}  cr  &  Leftrightarrow {a over b} + {b over a} ge 2  cr  &  Leftrightarrow 2 + {a over b} + {b over a} ge 2 + 2  cr  &  Leftrightarrow 2 + {a over b} + {b over a} ge 4  cr  &  Leftrightarrow 1 + 1 + {a over b} + {b over a} ge 4  cr  &  Leftrightarrow aleft( {{1 over a} + {1 over b}} ight) + bleft( {{1 over a} + {1 over b}} ight) ge 4  cr  &  Leftrightarrow left( {a + b} ight)left( {{1 over a} + {1 over b}} ight) ge 4 cr} )

0