27/04/2018, 15:53

Câu 18 trang 159 Sách bài tập (SBT) Toán 9 Tập 1

Cho đường tròn (O) có bán kính OA = 3cm. Dây BC của đường tròn vuông góc với OA tại trung điểm của OA. Tính độ dài BC. ...

Cho đường tròn (O) có bán kính OA = 3cm. Dây BC của đường tròn vuông góc với OA tại trung điểm của OA. Tính độ dài BC.

Cho đường tròn (O) có bán kính OA = 3cm. Dây BC của đường tròn vuông góc với OA tại trung điểm của OA. Tính độ dài BC.

Giải:

Gọi I là trung điểm của AB

Suy ra: (IO = IA = {1 over 2}OA = {3 over 2})

Ta có: BC ⊥OA (gt)

Suy ra:   (widehat {OIB} = 90^circ )

Áp dụng định lí Pi-ta-go vào tam giác vuông OIB ta có: (O{B^2} = B{I^2} + I{O^2})

suy ra: (B{I^2} = O{B^2} - I{O^2})

                   (={3^2} - {left( {{3 over 2}} ight)^2} = 9 - {9 over 4} = {{27} over 4})

            (BI ={{3sqrt 3 } over 2}) (cm)

Ta có: BI = CI (đường kính dây cung)

Suy ra: (BC = 2BI=2.{{3sqrt 3 } over 2} = 3sqrt 3 ) (cm)

Sachbaitap.com

0