25/04/2018, 14:56

Bài 63 trang 62 sgk Toán 8 tập 1, Viết mỗi phân thức sau dưới dạng tổng của một đa thức và một phân thức với tử thức là một hằng số,...

Viết mỗi phân thức sau dưới dạng tổng của một đa thức và một phân thức với tử thức là một hằng số, rồi tìm các giá trị nguyên của x để giá trị của phân thức cũng là số nguyên. Bài 63 trang 62 sgk toán 8 tập 1 – Ôn tập chương II- Phân thức đại số Viết mỗi phân thức sau dưới dạng tổng của một ...

Viết mỗi phân thức sau dưới dạng tổng của một đa thức và một phân thức với tử thức là một hằng số, rồi tìm các giá trị nguyên của x để giá trị của phân thức cũng là số nguyên. Bài 63 trang 62 sgk toán 8 tập 1 – Ôn tập chương II- Phân thức đại số

Viết mỗi phân thức sau dưới dạng tổng của một đa thức và một phân thức với tử thức là một hằng số, rồi tìm các giá trị nguyên của x để giá trị của phân thức cũng là số nguyên:

a) ({{3{x^2} – 4x – 17} over {x + 2}}) ;                                                    

b) ({{{x^2} – x + 2} over {x – 3}})

Hướng dẫn làm bài:

a)Ta có:

({{3{x^2} – 4x – 17} over {x + 2}} = 3x – 10 + {3 over {x + 2}}) 

Để phân thức là số nguyên thì ({3 over {x + 2}}) phải là số nguyên (với giá trị nguyên của x).

({3 over {x + 2}}) nguyên thì x +2 phải là ước của 3.

Các ước của 3 là  ( pm 1, pm 3) . Do đó

(x + 2 =  pm 1 =  > x =  – 1,x =  – 3) 

(x + 2 =  pm 3 =  > x = 1,x =  – 5) 

Vậy (x =  – 5; – 3; – 1;1.)

Cách khác:

({{3{x^2} – 4x – 17} over {x + 2}} = {{left( {3{x^2} + 6x} ight) – left( {10x + 20} ight) + 3} over {x + 2}}) 

=({{3xleft( {x + 2} ight) – 10left( {x + 2} ight) + 3} over {x + 2}})

=(3x – 10 + {3 over {x + 2}})

Rồi tiếp tục như trên ta được kết quả.

b)Ta có:({{{x^2} – x + 2} over {x – 3}} = x + 2 + {8 over {x – 3}}$)

Để  ({{{x^2} – x + 2} over {x – 3}}) là nguyên thì ({8 over {x – 3}}) phải nguyên. Suy ra x – 3 là ước của 8.

Các ước của 8 là ( pm 1, pm 2, pm 4, pm 8)

Do đó (x – 3 =  pm 1 =  > x = 4;2)

(x – 3 =  pm 2 =  > x = 5;1)

(x – 3 =  pm 4 =  > x = 7; – 1)

Vậy (x =  – 5; – 1;1;2;4;5;7;11).

0