Bài 2.7 trang 67 Sách bài tập (SBT) Hình học 11
Cho tứ diện SABC. Trên SA, SB và SC lần lượt lấy các điểm D, E và F sao cho DE cắt AB tại I, EF cắt BC tại J, FD cắt CA tại K. Chứng minh ba điểm I, J, K thẳng hàng. ...
Cho tứ diện SABC. Trên SA, SB và SC lần lượt lấy các điểm D, E và F sao cho DE cắt AB tại I, EF cắt BC tại J, FD cắt CA tại K. Chứng minh ba điểm I, J, K thẳng hàng.
Cho tứ diện SABC. Trên SA, SB và SC lần lượt lấy các điểm D, E và F sao cho DE cắt AB tại I, EF cắt BC tại J, FD cắt CA tại K.
Chứng minh ba điểm I, J, K thẳng hàng.
Giải:
(h.2.26)
Ta có:
(eqalign{
& I = DE cap AB cr
& DE subset left( {DEF}
ight) Rightarrow I in left( {DEF}
ight) cr
& AB subset left( {ABC}
ight) Rightarrow I in left( {ABC}
ight) cr} )
Lí luận tương tự thì J, K cũng lần lượt thuộc về hai mặt phẳng trên nên I, J, K thuộc về giao tuyến của (ABC) và (DEF) nên I, J, K thẳng hàng.
Sachbaitap.com