mạch điện
Có hai bài toán về : Phân giải : cho mạch và tín hiệu vào, tìm tín hiệu ra. Tổng hợp : Thiết kế mạch khi có tín hiệu vào và ra. Giáo trình này chỉ quan tâm tới loại bài toán thứ nhất. Quan hệ giữa tín hiệu ...
Có hai bài toán về :
- Phân giải : cho mạch và tín hiệu vào, tìm tín hiệu ra.
- Tổng hợp : Thiết kế mạch khi có tín hiệu vào và ra.
Giáo trình này chỉ quan tâm tới loại bài toán thứ nhất.
Quan hệ giữa tín hiệu vào x(t) và tín hiệu ra y(t) là mối quan hệ nhân quả nghĩa là tín hiệu ra ở hiện tại chỉ tùy thuộc tín hiệu vào ở quá khứ và hiện tại chứ không tùy thuộc tín hiệu vào ở tương lai, nói cách khác, y(t) ở thời điểm t0 nào đó không bị ảnh hưởng của x(t) ở thời điểm t>t0 .
Tín hiệu vào thường là các hàm thực theo thời gian nên đáp ứng cũng là các hàm thực theo thời gian và tùy thuộc cả tín hiệu vào và đặc tính của mạch.
Dưới đây là một số tính chất của mạch dựa vào quan hệ của y(t) theo x(t).
Mạch tuyến tính
Một mạch gọi là tuyến tính khi tuân theo định luật:
Nếu y1(t) và y2(t) lần lượt là đáp ứng của hai nguồn kích thích độc lập với nhau x1(t) và x2(t), mạch là tuyến tính nếu và chỉ nếu đáp ứng đối với
x(t)= k1x1(t) + k2x2(t)
là y(t)= k1y1(t) + k2y2(t) với mọi x(t) và mọi k1 và k2.
Trên thực tế, các mạch thường không hoàn toàn tuyến tính nhưng trong nhiều trường hợp sự bất tuyến tính không quan trọng và có thể bỏ qua. Thí dụ các mạch khuếch đại dùng transistor là các mạch tuyến tính đối với tín hiệu vào có biên độ nhỏ. Sự bất tuyến tính chỉ thể hiện ra khi tín hiệu vào lớn.
Mạch chỉ gồm các phần tử tuyến tính là mạch tuyến tính.
Thí dụ 1.1
Chứng minh rằng mạch vi phân, đặc trưng bởi quan hệ giữa tín hiệu vào và ra theo hệ thức:
là mạch tuyến tính
Giải
Gọi y1(t) là đáp ứng đối với x1(t):
Gọi y2(t) là đáp ứng đối với x2(t):
Với x(t)= k1x1(t) + k2 x2(t) đáp ứng y(t) là:
y(t)=k1y1(t)+k2y2(t)
Vậy mạch vi phân là mạch tuyến tính
Mạch bất biến theo thời gian (time invariant)
Liên hệ giữa tín hiệu ra và tín hiệu vào không tùy thuộc thời gian. Nếu tín hiệu vào trễ t0 giây thì tín hiệu ra cũng trễ t0 giây nhưng độ lớn và dạng không đổi.
Một hàm theo t trễ t0 giây tương ứng với đường biểu diễn tịnh tiến t0 đơn vị theo chiều dương của trục t hay t được thay thế bởi (t-t0). Vậy, đối với mạch bất biến theo thời gian, đáp ứng đối với x(t-t0) là y(t-t0)
Thí dụ 1.2
Mạch vi phân ở thí dụ 1.1 là mạch bất biến theo thời gian
Ta phải chứng minh đáp ứng đối với x(t-t0) là y(t-t0).
Thật vậy:
Để minh họa, cho x(t) có dạng như (H 1.13a) ta được y(t) ở (H 1.13b). Cho tín hiệu vào trễ (1/2)s, x(t-1/2) (H 1.13c), ta được tín hiệu ra cũng trễ (1/2)s, y(t-1/2) được vẽ ở (H 1.13d).
(H 1.13)
1.3.3 Mạch thuận nghịch
Xét mạch (H 1.14)
(H 1.14)
Nếu tín hiệu vào ở cặp cực 1 là v1 cho đáp ứng ở cặp cực 2 là dòng điện nối tắt i2 . Bây giờ, cho tín hiệu v1 vào cặp cực 2 đáp ứng ở cặp cực 1 là i’2. Mạch có tính thuận nghịch khi i’2=i2.
Mạch tập trung
Các phần tử có tính tập trung khi có thể coi tín hiệu truyền qua nó tức thời. Gọi i1 là dòng điện vào phần tử và i2 là dòng điện ra khỏi phần tử, khi i2= i1 với mọi t ta nói phần tử có tính tập trung.
(H 1.15)
Một mạch chỉ gồm các phần tử tập trung là mạch tập trung..
Với một mạch tập trung ta có một số điểm hữu hạn mà trên đó có thể đo những tín hiệu khác nhau.
Mạch không tập trung là một mạch phân tán. Dây truyền sóng là một thí dụ của mạch phân tán, nó tương đương với các phần tử R, L và C phân bố đều trên dây. Dòng điện truyền trên dây truyền sóng phải trễ mất một thời gian để đến ngã ra.