Giải bài 35,36,37 trang 126 SGK Toán 9 tập 2: Luyện tập hình cầu. Diện tích mặt cầu và…
Đáp án và hướng dẫn giải bài 35,36,37 trang 126 SGK Toán 9 tập 2 : Luyện tập Hình cầu. Diện tích mặt cầu và thể tích hình cầu. Bài 35 trang 126 SGK Toán 9 tập 2 – hình học Một cái bồn chứa xăng gồm hai cửa hình cầu và hình trụ (h110) Hãy tính thể tích của bồn ...
Đáp án và hướng dẫn giải bài 35,36,37 trang 126 SGK Toán 9 tập 2: Luyện tập Hình cầu. Diện tích mặt cầu và thể tích hình cầu.
Bài 35 trang 126 SGK Toán 9 tập 2 – hình học
Một cái bồn chứa xăng gồm hai cửa hình cầu và hình trụ (h110)
Hãy tính thể tích của bồn chứa theo kích thước cho trên hình vẽ.
Đáp án và hướng dẫn giải bài 35:
Thể tích cần tính gồm một hình trụ và một hình cầu.
– Bán kính đáy của hình trụ là 0,9m, chiều cao là 3,62m.
– Bán kính của hình cầu là 0,9 m
Thể tích của hình trụ là :
Vtrụ = πr2h = 3,14 (0,9)2.3,62= 9,215 (m3)
Thể tích của hình cầu là:
Vcầu= 4/3. πR3 = 4/3.3,14(0,9)3 = 3,055 (m3)
Thể tích của bồn chứa xăng:
V= V trụ + V cầu = 9,215 + 3,055 = 12,27 (m3)
Bài 36 trang 126 SGK Toán 9 tập 2 – hình học
Một chi tiết máy gồm một hình trụ và hai nửa hình cầu với các kích thước đã cho trên hình 111 (đơn vị: cm)
a) Tìm một hệ thức giữa x và h khi AA’ có độ dài không đổi và bằng 2a.
b) Với điều kiện ở a) hãy tính diện tích bề mặt và thể tích của chi tiết theo x và a.
Đáp án và hướng dẫn giải bài 36:
a) Ta có h + 2x = 2a
b) – Diện tích cần tính gồm diện tích xung quanh của hình trụ có bán kính đáy là x, chiều cao là h và diện tích mặt cầu có bán kính là x.
– Diện tích xung quanh của hình trụ: Strụ = 2πxh
– Diện tích mặt cầu: Sc= 4πx2
Nên diện tích bề mặt của chi tiết máy là:
S = Strụ + Sc = 2πxh + 4πx2 = 2πx(h+2x) = 4πax
Thể tích cần tình gồm thể tích hình trụ và thể tích hình cầu. Ta có:
Vtrụ = πx2h
Vcầu = V = 4/3. πx3
Nên thể tích của chi tiết máy là:
V = Vtrụ + Vcầu = πx2h + 4/3.πx3
= 2πx2a – (2/3)πx3
Bài 37 trang 126 SGK Toán 9 tập 2 – hình học
Cho nửa đường tròn tâm O, đường kính AB = 2R, Ax và By là hai tiếp tuyến với nửa đường tròn tại A và B. Lấy trên tia Ax điểm M rồi vẽ tiếp tuyến MP cắt By tại N.
a) Chứng minh rằng MON và APB là hai tam giác vuông đồng dạng.
b) Chứng minh rằng AM.BN = R2
c) Tính tỉ số khi AM = R/2
d) Tính thể tích của hình do nửa hình tròn APB quay quanh AB sinh ra.
Đáp án và hướng dẫn giải bài 37:
a) Ta có OM, ON lần lượt là tia phân giác cả AOP và BOP
Mà AOP kể bù BOP nên suy ra OM vuông góc với ON.
Vậy ∆MON vuông tại O.
Lại có ∆APB vuông vì có góc APB
vuông (góc nội tiếp chắn nửa cung tròn)
Tứ giác AOPM nội tiếp đường tròn vì có ∠MAP + ∠MPO = 2v. Nên ∠PMO = ∠PAO (cùng chắn cung OP).
Vậy hai tam giác vuông MON và APB đồng dạng vì có cặp góc nhọn bằng nhau.
b)
Tam giác AM = MP, BN = NP (1) (tính chất hai tiếp tuyến cắt nhau)
Tam giác vuông MON có OP là đường cao nên:
MN.PN = OP2 (2)
Từ 1 và 2 suy ra AM.BN = OP2 = R2
c) Từ tam giác MON đồng dạng với tam giác APB ta có :
Khi AM = R/2
thi do AM.BN = R2 suy ra BN = 2R
Do đó MN = MP + PN = AM + BN = R/2 + 2R = 5R/2
Suy ra MN2 = 25R/4
Vậy =
d) Nửa hình tròn APB quay quanh bán kính AB = 2R sinh ra một hình cầu có bán kính R.
Vậy V = 4/3. πR3
__________ HẾT _________