Câu 9.1, 9.2, 9.3 trang 51, 52 Sách bài tập Toán 7 tập 2: Hãy chọn khẳng định đúng trong các khẳng...
Hãy chọn khẳng định đúng trong các khẳng định.. Câu 9.1, 9.2, 9.3 trang 51, 52 Sách Bài Tập (SBT) Toán lớp 7 tập 2 – Bài 9: Tính chất ba đường cao của tam giác Câu 9.1 trang 51 Sách Bài Tập (SBT) Toán lớp 7 tập 2 Hãy chọn khẳng định đúng trong các khẳng định sau: (A) Trực ...
Câu 9.1 trang 51 Sách Bài Tập (SBT) Toán lớp 7 tập 2
Hãy chọn khẳng định đúng trong các khẳng định sau:
(A) Trực tâm của một tam giác bao giờ cũng nằm trong tam giác.
(B) Trực tâm của một tam giác bao giờ cũng nằm ngoài tam giác.
(C) Trực tâm của một tam giác bao giờ cũng trùng với một đỉnh của tam giác.
(D) Cả ba khẳng định trên đều sai.
Giải
Trực tâm của tam giác nằm trong tam giác chỉ với tam giác nhọn, nằm ngoài tam giác chỉ với tam giác tù, trùng với một đỉnh của tam giác chỉ với tam giác vuông. Chọn (D) Cả ba khẳng định trên đều sai.
Câu 9.2 trang 52 Sách Bài Tập (SBT) Toán lớp 7 tập 2
Cho tam giác ABC không là tam giác cân. Khi đó trực tâm của tam giác ABC là giao điểm của:
(A) Ba đường trung tuyến;
(B) Ba đường phân giác;
(C) Ba đường trung trực;
(D) Ba đường cao.
Hãy chọn phương án đúng.
Giải
Chọn (D) Ba đường cao.
Câu 9.3 trang 52 Sách Bài Tập (SBT) Toán lớp 7 tập 2
Cho tam giác ABC có hai đường cao AH, BK cắt nhau tại điểm M. Hãy tính góc AMB biết  = 55°, (widehat B = 67^circ ).
Giải
Để tính góc AMB, ta cần tính (widehat {{A_1}},widehat {{B_1}})
Trong tam giác vuông AHB có (widehat {{A_1}} = 90^circ – widehat {ABH} = 90^circ – 67^circ = 23^circ )
Trong tam giác vuông AKB có (widehat {{B_1}} = 90^circ – widehat {BAK} = 90^circ – 55^circ = 35^circ )
Vậy trong tam giác AMB có
$$widehat {AMB} = 180^circ – left( {widehat {{A_1} + widehat {{B_1}}}} ight) = 180^circ – (23^circ + 35^circ ) = 122^circ $$.