Câu 39 trang 34 Sách bài tập (SBT) Toán 8 tập 1
Thực hiện phép chia phân thức : ...
Thực hiện phép chia phân thức :
Thực hiện phép chia phân thức :
a. ({{{x^2} - 5x + 6} over {{x^2} + 7x + 12}}:{{{x^2} - 4x + 4} over {{x^2} + 3x}})
b. ({{{x^2} + 2x - 3} over {{x^2} + 3x - 10}}:{{{x^2} + 7x + 12} over {{x^2} - 9x + 14}})
Giải:
a. ({{{x^2} - 5x + 6} over {{x^2} + 7x + 12}}:{{{x^2} - 4x + 4} over {{x^2} + 3x}})( = {{{x^2} - 5x + 6} over {{x^2} + 7x + 12}}.{{{x^2} + 3x} over {{x^2} - 4x + 4}})
( = {{left( {{x^2} - 5x + 6} ight).xleft( {x + 3} ight)} over {left( {{x^2} + 7x + 12} ight){{left( {x - 2} ight)}^2}}} = {{left( {{x^2} - 2x - 3x + 6} ight).xleft( {x + 3} ight)} over {left( {{x^2} + 3x + 4x + 12} ight){{left( {x - 2} ight)}^2}}})
( = {{left[ {xleft( {x - 2} ight) - 3left( {x - 2} ight)} ight].xleft( {x + 3} ight)} over {left[ {xleft( {x + 3} ight) + 4left( {x + 3} ight)} ight]{{left( {x - 2} ight)}^2}}})
( = {{xleft( {x - 2} ight)left( {x - 3} ight)left( {x + 3} ight)} over {left( {x + 3} ight)left( {x + 4} ight){{left( {x - 2} ight)}^2}}} = {{xleft( {x - 3} ight)} over {left( {x + 4} ight)left( {x - 2} ight)}})
b. ({{{x^2} + 2x - 3} over {{x^2} + 3x - 10}}:{{{x^2} + 7x + 12} over {{x^2} - 9x + 14}})( = {{{x^2} + 2x - 3} over {{x^2} + 3x - 10}}.{{{x^2} - 9x + 14} over {{x^2} + 7x + 12}})
(eqalign{ & = {{left( {{x^2} + 2x - 3} ight)left( {{x^2} - 9x + 14} ight)} over {left( {{x^2} + 3x - 10} ight)left( {{x^2} + 7x + 12} ight)}} = {{left( {{x^2} + 3x - x - 3} ight)left( {{x^2} - 7x - 2x + 14} ight)} over {left( {{x^2} + 5x - 2x + 10} ight)left( {{x^2} + 3x + 4x + 12} ight)}} cr & = {{left[ {xleft( {x + 3} ight) - left( {x + 3} ight)} ight]left[ {xleft( {x - 7} ight) - 2left( {x - 7} ight)} ight]} over {left[ {xleft( {x + 5} ight) - 2left( {x + 5} ight)} ight]left[ {xleft( {x + 3} ight) + 4left( {x + 3} ight)} ight]}} cr & = {{left( {x + 3} ight)left( {x - 1} ight)left( {x - 7} ight)left( {x - 2} ight)} over {left( {x + 5} ight)left( {x - 2} ight)left( {x + 3} ight)left( {x + 4} ight)}} = {{left( {x - 1} ight)left( {x - 7} ight)} over {left( {x + 5} ight)left( {x + 4} ight)}} cr} )