27/04/2018, 14:04

Câu 32 trang 91 Sách bài tập (SBT) Toán 8 tập 2

Chứng minh rằng tam giác KMN đồng dạng với tam giác ABC với tỉ số đồng dạng k ...

Chứng minh rằng tam giác KMN đồng dạng với tam giác ABC với tỉ số đồng dạng k

Tam giác ABC có ba góc nhọn và có trực tâm là điểm H. Gọi K, M, N thứ tự là trung điểm của các đoạn thẳng AH, BH, CH.

Chứng minh rằng tam giác KMN đồng dạng với tam giác ABC với tỉ số đồng dạng k = ({1 over 2}) .

Giải:

Trong tam giác AHB, ta có:

K là trung điểm của AH (gt)

M là trung điểm của BH (gt)

Suy ra KM là đường trung bình của tam giác AHB.

Suy ra: KM ( = {1 over 2}AB)

 (tính chất đường trung bình của tam giác )

Suy ra: ({{KM} over {AB}} = {1 over 2})              (1)

Trong tam giác AHC, ta có:

K là trung điểm của AH (gt)

N là trung điểm của CH (gt)

Suy ra KN là đường trung bình của tam giác AHC.

Suy ra: KN ( = {1 over 2}AC) (tính chất đường trung bình của tam giác )

Suy ra: ({{KN} over {AC}} = {1 over 2})        (2)

Trong tam giác BHC, ta có:

M trung điểm của BH (gt)

N trung điểm của CH (gt)

Suy ra MN là đường trung bình của tam giác BHC.

Suy ra: MN ( = {1 over 2}BC) (tính chất đường trung bình của tam giác )

Suy ra: ({{MN} over {BC}} = {1 over 2})              (3)

Từ (1), (2) và (3) suy ra: ({{KM} over {AB}} = {{KN} over {AC}} = {{MN} over {BC}} = {1 over 2})

Vậy ∆ KMN đồng dạng ∆ ABC (c.c.c)

Ta có hệ số tỉ lệ: k ( = {{KM} over {AB}} = {1 over 2}).

Sachbaitap.com

0