25/04/2018, 18:16

Câu 18 trang 112 SGK Đại số 10 nâng cao, Chứng minh rằng với mọi số thực a, b, ta có:...

Chứng minh rằng với mọi số thực a, b, ta có:. Câu 18 trang 112 SGK Đại số 10 nâng cao – Bài 1: Bất đẳng thức và chứng minh bất đẳng thức Chứng minh rằng với mọi số thực a, b, ta có: (a + b + c) 2 ≤ 3(a 2 + b 2 + c 2 ) Đáp án Ta có: (a + b + c) 2 ≤ 3(a 2 + b 2 + c 2 ) ...

Chứng minh rằng với mọi số thực a, b, ta có:. Câu 18 trang 112 SGK Đại số 10 nâng cao – Bài 1: Bất đẳng thức và chứng minh bất đẳng thức

Chứng minh rằng với mọi số thực a, b, ta có:

(a + b + c)2 ≤ 3(a2 + b2 + c2)

Đáp án

Ta có:

(a + b + c)2 ≤ 3(a2 + b2 + c2)

⇔ a2 + b2 + c2 +2ab + 2bc + 2ca ≤ 3a2 + 3b2 + 3c2

⇔ 2a2 + 2b2 + 2c2 – 2ab – 2bc – 2ca ≥ 0

⇔ (a – b)2 + (b – c)2 + (c – a)2 ≥ 0   (luôn đúng)

Vậy (a + b + c)2 ≤ 3(a2 + b2 + c2)

0