Câu 100 trang 92 Sách bài tập (SBT) Toán 8 tập 1
Qua O vẽ đường thẳng cắt hai cạnh AD, BC ở G, H. Chứng minh rằng EGFH là hình bình hành. ...
Qua O vẽ đường thẳng cắt hai cạnh AD, BC ở G, H. Chứng minh rằng EGFH là hình bình hành.
Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Qua O, vẽ đường thẳng cắt hai cạnh AB, CD ở E, F. Qua O vẽ đường thẳng cắt hai cạnh AD, BC ở G, H. Chứng minh rằng EGFH là hình bình hành.
Giải:
Xét ∆ OAE và ∆ OCF:
OA = OC (tính chất hình bình hành)
(widehat {AOE} = widehat {COF}) (đối đỉnh)
(widehat {OAE} = widehat {OCF}) (so le trong)
Do đó: ∆ OAE = ∆ OCF (g.c.g)
⇒ OE = OF (1)
Xét ∆ OAG và ∆ OCH:
OA = OC (tính chất hình bình hành)
(widehat {AOG} = widehat {COH}) (đối đỉnh)
(widehat {OAG} = widehat {OCH}) (so le trong)
Do đó: ∆ OAG = ∆ OCH (g.c.g)
⇒ OG = OH (2)
Từ (1) và (2) suy ra: Tứ giác EGFH là hình bình hành ( vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
Sachbaitap.com