Bí mật sức bền tơ nhện
Tơ nhện là chất liệu siêu bền : cứng hơn thép, dai hơn nylon, co dãn tốt hơn sợi Kevlar, được cấu tạo từ protein và amino acid (axit amin). Các nhà khoa học đã từng biết đến sức dai hay sức bền của các sợi tơ nằm ở chất amino acid trong các thớ sợi: sức ...
Tơ nhện là chất liệu siêu bền : cứng hơn thép, dai hơn nylon, co dãn tốt hơn sợi Kevlar, được cấu tạo từ protein và amino acid (axit amin). Các nhà khoa học đã từng biết đến sức dai hay sức bền của các sợi tơ nằm ở chất amino acid trong các thớ sợi: sức mạnh của tơ kéo nằm ở amino acid kết hợp cùng tinh thể tạo nên những protein cứng và khoẻ; trong khi đó, tơ xoắn được làm từ những chuỗi protein cuộn tròn khiến nó có thể đàn hồi và co dãn.
Hình ảnh minh họa cấu trúc của một mảng beta protein, tức tổ hợp telethonin Z1-Z2, nằm trong bó protein titin khổng lồ 2. Hình phóng đại bên phải cho thấy hướng sức bền của 3 sợi beta protein (màu tía) với các liên kết hydrogen (màu vàng), giúp chúng gắn kết với nhau. Buehler và Keten giải thích rằng liên kết hydrogen trong cấu trúc mảng beta gắn kết với 3 hoặc 4 bó, thậm chí có mặt ở rất nhiều liên kết. Hình ảnh: Sinan Keten và Markus BuehlerTheo tiết lộ mới được công bố bởi các nhà nghiên cứu tại Học viện công nghệ Massachusetts thì sức bền của vật liệu sinh học như tơ nhện nằm ở đặc trưng cấu trúc hình học của các protein, gồm nhiều mối liên kết yếu giữa các các nguyên tử hydrogen (hyđrô) cùng phối hợp với nhau để chịu đựng những tác động như sức căng và sức nặng, chứa đựng sức bền tiềm tàng.
Cấu trúc này làm cho vật chất tự nhiên tuy nhẹ nhưng vững chắc như thép ngay cả khi liên kết hydrogen giữa các sợi tơ với nhau là rất yếu, yếu hơn từ 100 đến 1000 lần so với liên kết trong tinh thể kim loại hoặc ngang bằng với liên kết cộng hóa trị trong sợi nhân tạo Kevlar 3
Dựa trên lý thuyết dựng mô hình mô phỏng các đại phân tử được thực hiện nhờ máy điện toán siêu mạnh, nhóm nghiên cứu đã đưa ra những hiểu biết mới và chính xác về cách cấu trúc protein làm tăng sức bền của vật liệu, giúp các kỹ sư sáng tạo ra những vật liệu mới bắt chước được những sợi tơ nhện mỏng manh nhưng rất bền chắc. Điều này cũng ảnh hưởng đến nghiên cứu trên các sợi mô ở tế bào và cấu trúc sợi amyloid 4trong mô não.
“Chúng tôi hy vọng từ những thấu hiểu về cơ chế của vật liệu ở mức phân tử, sẽ có thể giúp chúng tôi sáng tạo ra một nguyên lý hướng dẫn tổng hợp ra những vật liệu mới”, giáo sư Markus Buehler, người dẫn dắt nhóm nghiên cứu cho biết. Trong bài báo xuất bản ngày 13 tháng 2 trên tờ Nano Letters trực tuyến, Buehler và nghiên cứu sinh Sinan Keten đã miêu tả về cách họ dùng mô hình phân tử để giải thích cho 3 hoặc 4 cụm liên kết hydrogen kết nối với các cụm sợi beta ngắn và chồng chất nhau trong một đoạn cấu trúc protein khi đặt dưới một lực ép cơ học 5. Kiểu cấu trúc này cho phép protein chịu được những lực lớn hơn khi sợi beta chỉ có 1 hoặc 2 liên kết. Điều kỳ quặc là những bó nhỏ lại chịu đựng được sức nặng lâu hơn những sợi beta với rất nhiều liên kết hydrogen.
“Với cấu trúc protein được tạo thành từ 1 hoặc 2 liên kết hydrogen sẽ tạo nên sức bền cơ học rất nhỏ, bởi vì liên kết hydrogen rất yếu và dễ dàng bị bẻ gãy mà gần như không phải kích thích”, Buehler giải thích. Esther và Harold E. Edgerton, hai trợ lý giáo sư tại MIT cho biết: “Nhưng khi dùng 3 hoặc 4 liên kết khiến cho sức bền thậm chí vượt quá nhiều kim loại. Sử dụng nhiều hơn 4 liên kết sẽ dẫn đến suy giảm sức bền rất nhiều. Sức bền đạt cực đại với 3 hoặc 4 liên kết”.
Sau khi quan sát những đứt gãy đồng thời của các cụm liên kết hydrogen trong cấu trúc mô hình mô phỏng phân tử protein. Buehler và Keten muốn tìm hiểu lý do các liên kết xâm nhập trong những cụm nhỏ, thậm chí ở cả những sợi dài với rất nhiều liên kết hydrogen. Họ sử dụng quy luật nhiệt động lực học để giải thích những hiện tượng bất thường. Bài báo đăng trên Nano Letters miêu tả về cách mà những lực tác động từ bên ngoài làm thay đổi entropi năng lượng trong hệ thống dẫn đến sự đứt vỡ của các liên kết hydrogen. Bằng việc tính toán năng lượng cần thiết để khởi đầu tiến trình đứt đoạn lan rộng trong một phân tử protein, họ giải thích rằng việc thêm vào nhiều liên kết hydrogen trong những sợi dài hơn có thể không làm tăng thêm độ bền của vật liệu. “Bạn có thể hình dung về một sợi beta dạng chuỗi dài với liên kết yếu sẽ không tạo nên sức bền cho mỗi bộ phận”, Keten cho biết. “Nhưng một vật liệu với rất nhiều sợi beta ngắn dạng gấp khúc và kết nối với 3 hoặc 4 liên kết hydrogen có thể tạo nên sức bền lớn hơn cả thép. Trong nhiều kim loại, năng lượng được cất giữ trực tiếp trong nhiều liên kết vững bền hơn, tức liên kết kim loại, ngay cả khi khi trạng thái tinh thể bị đập vỡ nhỏ dần. Trong các protein, mọi thứ phức tạp nhờ tính đàn hồi entropi giống như sợi mỳ các sợi mỳ xoắn lại với nhau và tính cộng tác tự nhiên của các liên kết hydrogen”.
Những mảng beta với nhiều đoạn sợi ngắn được gắn kết với 3 hoặc 4 liên kết hydrogen là dạng thức cấu tạo phổ biến trong mọi cấu trúc beta protein. Sức bền của protein là một tiến hóa trọng yếu, được thúc đẩy nhờ bước sáng tạo của tự nhiên.
Các kim loại được định hình bởi nhiều liên kết mạnh mẽ nên cần phải tiêu tốn khá nhiều năng lượng để đập vỡ”, Buehler cho biết. “Tuy nhiên, các mắt lưới tinh thể của cấu trúc kim loại thì không bao giờ hoàn hảo; bao gồm nhiều nhược điểm làm giảm sức bền của vật liệu. Kim loại có thể bộc lộ nhược điểm như rạn nứt khi bạn đặt lên chúng một tải trọng. Trong những mảng protein beta, giới hạn tự nhiên của các nhóm liên kết hydrogen giúp phân tán năng lượng do những lực bên ngoài tác động vào mà không làm giảm sức bền vật liệu. Điều này cho thấy những bí ẩn khéo léo và đầy hiệu quả của các vật liệu thiên nhiên”.
Cơ cấu tổ chức protein của tơ có bị thay đổi khi bị ướt (tơ nhện hyđrat hóa) hay không? Sử dụng phương pháp đo tính chiết quang kép đối với các loại tơ kéo ở nhện bị hyđrát hóa nhằm so sánh trật tự axit amino của protein trong tơ kéo giữa hai loài nhện Araneus diadematus (rất giàu axit amino proline, khoảng 16%) và Nephila clavipes (tỉ lệ proline trong tơ kéo rất thấp), Gosline phát hiện ra rằng:
- Đặc tính cơ học khác biệt giữa tơ của các loài nhện khác nhau có thể bắt nguồn từ thành phần amino axit của protein trong tơ nhện. Amino axit proline đặc trưng với tác động phá vỡ cấu trúc ba chiều của chuỗi protein, nên chuỗi protein có tỉ lệ proline cao có cấu trúc kém bền hơn so với chuỗi protein có ít hoặc không có proline.
- Tơ nhện nhiều amino axit proline (chủ yếu tại khu vực kết nối trong cấu trúc tinh thể của protein khiến mối nối linh hoạt và thay đổi bất thường) mang đặc tính co giãn của cao su, còn tơ nhện có tỉ lệ proline thấp (tại khu vực kết nối khiến mối nối có cấu trúc tinh thể bền chắc hơn) thì giống như một chiếc lò xo rắn chắc.
- : Bảng so sánh độ bền của một số loại vật liệu. Dữ liệu do Gosline cung cấp, dẫn theo Randolph V. Lewis, Khoa sinh học phân tử, Đại học Wyoming.
Bảng | ||
Vật liệu | Độ bền (N m -2) | Năng lượng cần thiết để bẻ gãy các liên kết (J kg -1) |
Tơ tằm | 1.109 | 1.105 |
Kevlar | 4.109 | 3.104 |
Cao su | 1.106 | 8.104 |
Gân | 1.109 | 5.103 |
- : Mô hình tổng quan phức hợp Titin Z1Z2 – Telethonin.
Mẫu bên trái cho thấy cảnh quan bề mặt tổ hợp titin Z1Z1 - telethonin được minh họa bề mặt tiếp xúc khăng khít giữa telethonin (màu vàng) và hai phân tử titin (màu đỏ và xanh da trời). Mẫu bên phải cho thấy sự ghép đôi nhị trùng của 2 cặp Z1Z2 ở hai bên bờ phân tử telethonin. Mô hình lý thuyết cấu trúc gốc titin Z1Z2 – telethonin dưới góc độ lý sinh, được xây nhờ máy điện toán, do Viện nghiên cứu Beckman, Đại học Illinois tại Urbana-Champaign đề xuất
.
- : Kevlar là nhãn hiệu thương mại được đăng ký sợi cho loại sợi nhân tạo para-aramid, rất bền vững và nhẹ. Kavla được phát triển tại Công ty Dupont vào năm 1965 bởi by Stephanie Kwolek và Roberto Berendt, được thương mại hóa từ những năm đầu thập kỷ 70 của thế kỷ trước.
- : Amyloid là những tập hợp sợi protein không tan, chia sẻ những cấu trúc điểm riêng biệt. Sự chồng chất bất thường của amyloid trong các cơ quan có thể dẫn tới bệnh thoái hoá tinh bột (amyloidosis) và có thể đóng những vai trò khác nhau trong những bệnh suy thoái thần kinh như bệnh Alzheimer.
- : Phân tử telethonin có cấu trúc sợi vòng tròn chất chồng lên nhau nên đoạn protein này được lấy ra bằng kiểu cắt đứt phân tử telethonin theo bề ngang chứ không phải cắt chiều dài phân tử telethonin ra từng đoạn một.