Bài 3.8 trang 140 Sách bài tập (SBT) Hình học 11
Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABC ...
Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABC
Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABC. Chứng minh rằng:
(overrightarrow {G{ m{D}}} .overrightarrow {GA} + overrightarrow {G{ m{D}}} .overrightarrow {GB} + overrightarrow {G{ m{D}}} .overrightarrow {GC} = 0)
Giải:
Ta có:
(eqalign{
& overrightarrow {G{
m{D}}} .overrightarrow {GA} + overrightarrow {GD} .overrightarrow {GB} + overrightarrow {GD} .overrightarrow {GC} cr
& = overrightarrow {GD} .left( {overrightarrow {GA} + overrightarrow {GB} + overrightarrow {GC} }
ight) cr
& = overrightarrow {GD} .overrightarrow 0 = 0 cr} )
(Vì G là trọng tâm của tam giác ABCD nên (overrightarrow {GA} + overrightarrow {GB} + overrightarrow {GC} = overrightarrow 0 ) )
Sachbaitap.com