Bài 1.49 trang 41 Sách bài tập (SBT) Hình học 11
Cho tam giác ABC. Trong nửa mặt phẳng có bờ là đường thẳng BC không chứa điểm A, ta dựng hình vuông BCDE ...
Cho tam giác ABC. Trong nửa mặt phẳng có bờ là đường thẳng BC không chứa điểm A, ta dựng hình vuông BCDE
Cho tam giác ABC. Trong nửa mặt phẳng có bờ là đường thẳng BC không chứa điểm A, ta dựng hình vuông BCDE. Kẻ DM vuông góc với AB, EN vuông góc với AC, và kẻ đường cao AH của tam giác ABC. Chứng minh rằng ba đường thẳng AD, EN, và AH đồng quy.
Giải:
Nếu ta “ kéo “ tam giác ABC xuống theo phương AH sao cho B trùng E, C trùng D thì A trùng với A’. Khi đó MD, EN, AH là ba đường cao của tam giác A’ED nên chúng đồng quy.
Thực hiện phép tịnh tiến theo vectơ (overrightarrow {BE} ) ta có
({T_{overrightarrow {BE} }}:A mapsto A')
(B mapsto E)
(C mapsto D)
Khi đó, ta có: (A'Eparallel AB,A'Dparallel AC).
Gọi (I = DM cap EN)
Ta có:
(left{ matrix{
AB ot DM hfill cr
ABparallel A'E hfill cr}
ight. Rightarrow DM ot A'E)
Tương tự, ta có: (EN ot A'D).
Xét ∆A’ED, vì I là giao điểm của hai đường cao nên I là trực tâm của tam giác trên.
Suy ra (A'I ot E{ m{D}})
( Rightarrow AI ot BC') hay (I in AH)
Vậy AH, DM, EN đồng quy tại I.
Sachbaitap.com