11/01/2018, 14:05

Lý thuyết phương trình bậc hai với hệ số thực

Lý thuyết phương trình bậc hai với hệ số thực Các căn bậc hai của số thực a < 0 ...

Lý thuyết phương trình bậc hai với hệ số thực

Các căn bậc hai của số thực a < 0

- Các căn bậc hai của số thực (a < 0) là (± isqrt{|a|})

- Xét phương trình bậc hai (a{x^2} + bx + c= 0) với (a, b, c in R), (a e 0).

Đặt  (Delta  = {b^2}-4ac).

- Nếu (∆ = 0) thì phương trình có một nghiệm kép (thực) (x =  -frac{b}{2a}).

- Nếu (∆ > 0) thì phương trình có hai nghiệm thực

(x_{1,2})= ( frac{-b pm sqrt{igtriangleup }}{2a})

- Nếu (∆ < 0) thì phương trình có hai nghiệm phức 

(x_{1,2}) = ( frac{-b pm isqrt{igtriangleup }}{2a})

Nhận xét. Trên (mathbb C), mọi phương trình bậc hai đều có hai nghiệm (không nhất thiết phân biệt). Tổng quát, mọi phương trình bậc (n), (n in {mathbb N }^*) đều có (n) nghiệm phức (các nghiệm không nhất thiết phải phân biệt). 

soanbailop6.com

0