Giải bài tập Toán lớp 9 bài 3: Liên hệ giữa dây và khoảng cách từ tâm đến dây
Giải bài tập Toán lớp 9 trang 105, 106 SGK Giải bài tập Toán lớp 9 bài 3: Liên hệ giữa dây và khoảng cách từ tâm đến dây Giải bài tập Toán lớp 9 bài 3: Liên hệ giữa dây và khoảng cách từ tâm đến dây. Đây là tài liệu ...
Giải bài tập Toán lớp 9 bài 3: Liên hệ giữa dây và khoảng cách từ tâm đến dây
Giải bài tập Toán lớp 9 bài 3: Liên hệ giữa dây và khoảng cách từ tâm đến dây. Đây là tài liệu tham khảo hay được VnDoc.com sưu tầm nhằm giúp quá trình ôn tập và củng cố kiến thức chuẩn bị cho kì thi học kì mới môn Toán của các bạn học sinh lớp 9 trở nên thuận lợi hơn. Mời các bạn tham khảo
Trả lời câu hỏi Toán 9 Tập 1 Bài 3 trang 105: Hãy sử dụng kết quả của bài toán ở mục 1 để chứng minh rằng:
a) Nếu AB = CD thì OH = OK.
b) Nếu OH = OK thì AB = CD.
Lời giải
OH là một phần đường kính vuông góc với dây AB
⇒ H là trung điểm của AB ⇒ AB = 2HB
OK là một phần đường kính vuông góc với dây CD
⇒ K là trung điểm của CD ⇒ CD = 2KD
Theo mục 1: OH2 + HB2 = OK2 + KD2
a) Ta có: AB = CD ⇒ HB = KD
⇒ OH2 = OK2 ⇒ OH = OK
b) Ta có: OH = OK ⇒ HB2= KD2
⇒ HB = KD ⇒ AB = CD
Trả lời câu hỏi Toán 9 Tập 1 Bài 3 trang 105: Hãy sử dụng kết quả của bài toán ở mục 1 để so sánh các độ dài:
a) OH và OK, nếu biết AB > CD.
b) AB và CD, nếu biết OH < OK.
Lời giải
a) Nếu AB > CD thì HB > KD
⇒ HB2 > KD2
Mà: OH2 + HB2 = OK2 + KD2
⇒ OH2 < OK2
⇒ OH < OK
b) Nếu OH < OK thì OH2< OK2
⇒ HB2 > KD2 ⇒ HB > KD
⇒ AB > CD
Trả lời câu hỏi Toán 9 Tập 1 Bài 3 trang 105: Cho tam giác ABC, O là giao của các đường trung trực của tam giác; D, E, F theo thứ tự là trung điểm của các cạnh AB, BC, AC. Cho biết OD > OE, OE = OF (h.69).
Hãy so sánh các độ dài:
a) BC và AC;
b) AB và AC.
Lời giải
O là giao điểm của 3 đường trung trực của tam giác ABC
⇒ O là tâm đường tròn ngoại tiếp tam giác ABC
a) OE = OF ⇒ AC = BC
b) OD > OE ⇒ AB < AC
Bài 12 (trang 106 SGK Toán 9 Tập 1): Cho đường tròn tâm O bán kính 5cm, dây AB bằng 8cm.
a) Tính khoảng cách từ tâm O đến dây AB.
b) Gọi I là điểm thuộc dây AB sao cho AI = 1cm. Kẻ dây CD đi qua I và vuông góc với AB. Chứng minh rằng CD = AB.
Lời giải:
a) Kẻ OJ vuông góc với AB tại J.
Áp dụng định lí Pitago trong tam giác vuông OAJ có:
OJ2 = OA2 – AJ2 = 52 – 42 = 9
=> OJ = 3cm (1)
Vậy khoảng cách từ tâm O đến dây AB là OJ = 3cm.
b) Kẻ OM vuông góc với CD tại M.
Tứ giác OJIM có: ∠J = ∠I = ∠M = 1v nên là hình chữ nhật
Ta có IJ = AJ – AI = 4 – 1 = 3cm
=> OM = IJ = 3cm (Tính chất hình chữ nhật) (2)
Từ (1), (2) suy ra CD = AB (hai dây cách đều tâm thì bằng nhau). (đpcm)
Bài 13 (trang 106 SGK Toán 9 Tập 1): Cho đường tròn (O) có các dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm E nằm bên ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Chứng minh rằng:
a) EH = EK
b) EA = EC.
Lời giải:
a) Nối OE ta có: AB = CD
=> OH = OK (Định lí 3)
Hai tam giác vuông OEH và OEK có:
OE là cạnh chung
OH = OK
=> ΔOEH = ΔOEK (cạnh huyền, cạnh góc vuông)
=> EH = EK (1). (đpcm)
b) Ta có: OH ⊥ AB
Mà AB = CD (gt) suy ra AH = KC (2)
Từ (1) và (2) suy ra:
EA = EH + HA = EK + KC = EC
Vậy EA = EC. (đpcm)
Bài 14 (trang 106 SGK Toán 9 Tập 1): Cho đường tròn tâm O bán kính 25cm, dây AB bằng 40cm. Vẽ dây CD song song với AB và có khoảng cách đến AB bằng 22cm. Tính độ dài dây CD.
Lời giải:
Kẻ OM ⊥ AB, ON ⊥ CD.
Ta thấy M, O, N thẳng hàng. Ta có:
Áp dụng định lí Pitago trong tam giác vuông AMO có:
OM2 = OA2 – AM2 = 252 – 202 = 225
=> OM = √225 = 15cm
=> ON = MN – OM = 22 – 15 = 7 (cm)
Áp dụng định lí Pitago trong tam giác vuông CON có:
CN2 = CO2 – ON2 = 252 – 72 = 576
=> CN = √576 = 24
=> CD = 2CN = 48cm
Bài 15 (trang 106 SGK Toán 9 Tập 1): Cho hình 70 trong đó hai đường tròn cùng có tâm là O. Cho biết AB > CD.
Hãy so sánh các độ dài:
a) OH và OK
b) ME và MF
c) MH và MK.
Hình 70
Lời giải:
a) Trong đường tròn nhỏ:
AB > CD => OH < OK (định lí 3)
b) Trong đường tròn lớn:
OH < OK => ME > MF (định lí 3)
c) Trong đường tròn lớn:
ME > MF => MH > MK
Bài 16 (trang 106 SGK Toán 9 Tập 1): Cho đường tròn (O), điểm A nằm bên trong đường tròn. Vẽ dây BC vuông góc với OA tại A. Vẽ dây EF bất kì đi qua A và không vuông góc với OA. Hãy so sánh độ dài hai dây BC và EF.
Lời giải:
Kẻ OH ⊥ EF.
Trong tam giác vuông OHA vuông tại H có OA > OH (đường vuông góc ngắn hơn đường xiên).
Vì OA > OH nên BC < EF (định lí 3).