22/02/2018, 14:47

Giải bài 36,37,38 ,39,40,41 ,42,43 trang 72,73 SGK Toán 7 tập 2: Tính chất ba đường phân giác của…

Tóm tắt lý thuyết và Giải bài 36,37 trang 72 ; Bài 38,39,40 ,41,42,43 trang 73 SGK Toán 7 tập 2 : Tính chất ba đường phân giác của tam giác. A. Tóm tắt lý thuyết bài: Tính chất ba đường phân giác của tam giác 1. Đường phân giác của tam giác Trong tam giác ABC, tia phân ...

Tóm tắt lý thuyết và Giải bài 36,37 trang 72; Bài 38,39,40 ,41,42,43 trang 73 SGK Toán 7 tập 2: Tính chất ba đường phân giác của tam giác.

A. Tóm tắt lý thuyết bài: Tính chất ba đường phân giác của tam giác

1. Đường phân giác của tam giác

Trong tam giác ABC, tia phân giác của góc A cắt cạnh BC tại điểm M.

+ Đoạn thẳng AM được gọi là đường phân giác của tam giác ABC

+ Đường thẳng AM cũng được gọi là đường phân giác của tam giác ABC

+ Mỗi tam giác có ba đường phân giác.

Tính chất:

Trong một tam giác cân, đường phân giác xuất phát từ đỉnh đồng thời là đường trung tuyến ứng với cạnh đáy

2. Tính chất ba đường phân giác của tam giác

Định lí: Ba đường phân giác của một tam giác cùng đi qua một điểm. Điểm này cách đều ba cạnh của tam giác đó.

GT : ∆ABC

Hai phân giác BE, CF cắt nhau tại I

KL: AI là tia phân giác của góc A

IH = IK = IL

B. Hướng dẫn giải bài tập SGK trang 72,73 Toán 7 tập 2: Tính chất ba đường phân giác của tam giác

Bài 36 trang 72 SGK Toán 7 tập 2 – Hình học

Cho tam giác DEF, điểm I nằm trong tam giác và cách đều ba cạnh của nó. Chứng minh I là điểm chung của ba đường phân giác của tam giác DEF

Hướng dẫn giải bài 36:

I nằm trong ∆DEF và cách đều ba cạnh của tam giác nên I lần lượt thuộc phân giác của các góc ∠D, ∠E , ∠F

Vậy I là điểm chung của ba đường phân giác của tam giác DEF


Bài 37 trang 72 SGK Toán 7 tập 2 – Hình học

Nêu cách vẽ điểm K ở trong tam giác MNP mà các khoảng cách từ K đến ba cạnh của tam giác đó bằng nhau. Vẽ hình minh họa.

Hướng dẫn giải bài 37:

Vẽ điểm K ở trong tam giác MNP mà các khoảng cách từ K đến ba cạnh của tam giác đó bằng nhau tức là K là giao điểm của các đường phân giác trong tam giác MNP

Vì vậy ta chỉ cần vẽ phân giác của hai trong ba góc của ∆MNP


Bài 38 trang 73 SGK Toán 7 tập 2 – Hình học

Cho hình bên

a)   Tính góc KOL

b)   Kẻ tia  IO, hãy tính góc KIO

c)   Điểm O có cách đều ba cạnh của tam giác IKL không? Tại sao?

Hướng dẫn giải bài 38:

a) ∆KIL có ∠I = 62

nên ∠IKL + ∠ILK  = 1180

Vì KO và LO là phân giác  ∠IKL, ∠ILK nên = 1/2 (∠IKL + ∠ILK)

=> ∠OKL + ∠OLK = 1/2 118

 =  590

∆KOL có  =   590

nên ∠KOL = 1800 – 590 = 1210

b) Ta có:- KO và LO là các đường phân giác
– Ko và LO cắt nhau tại O
nên IO là đường phân giác xuất phát từ đỉnh I
suy ra : góc KIO = 1/2 góc I = 31 độ

c) Vì O là giao điểm của hai đường phân giác của góc K và góc L  nên O cách đều ba cạnh của tam giác IKL.


Bài 39 trang 73 SGK Toán 7 tập 2 – Hình học

Cho hình bên.

a) chứng minh ∆ABD = ∆ACD

b) So sánh góc DBC với góc DCB

Hướng dẫn giải bài 39:

a) Căn cứ các kí hiệu đã cho trên hình của bài 39 ta có: ∆ABD và ∆ACD có:

AB = AC

AD là cạnh chung

=>  ∆ABD = ∆ACD

b)  Vì  ∆ABD = ∆ACD

=> BD = CD => ∆BCD cân tại D

=> 


Bài 40 trang 73 SGK Toán 7 tập 2 – Hình học

Cho tam giác ABC cân tại A. gọi G là trọng tâm, I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác đó. Chứng minh ba điểm A, G, I thẳng hàng

Hướng dẫn giải bài 40:

Gọi giao điểm của BG với AC là M;

CG với AB là N

Vì G là trọng tâm của ∆ ABC

nên BM, CN, là trung tuyến

Mặt khác ∆ABC cân tại A

Nên BM = CN

Ta có GB = 1/2 BM; GC = 2/3 CN (t/c trọng tâm của tam giác)

Mà BM = CN nên GB = GC

Do đó: ∆AGB = ∆AGC (c.c.c)

=>   => G thuộc phân giác của ∠BAC

Mà ∆ABI = ∆ACI (c.c.c)

=>  => I thuộc phân giác của ∠BAC

Vì G, I cùng thuộc phân giác của góc ∠BAC nên A, G, I  thẳng hàng.


Bài 41 trang 73 SGK Toán 7 tập 2 – Hình học

Hỏi trọng tâm của một tam giác đều có cách đều ba cạnh của nó hay không ? Vì sao ?

Hướng dẫn giải bài 41:

Trọng tâm của một tam giác cách đều ba cạnh của nó. Vì nó là tam giác đều. Trọng tâm, cũng là tâm vòng tròn nội tiếp (cách đều 3 cạnh), cũng trùng tâm vòng tròn ngoại tiếp (cách đều 3 góc).


Bài 42 trang 73 SGK Toán 7 tập 2 – Hình học

Chứng minh định lí : Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân

Gợi ý : Trong ∆ABC, nếu AD vừa là đường trung tuyến vừa là đường phân giác thì kéo dài AD một đoạn AD1 sao cho DA1 = AD

Hướng dẫn giải bài 42:

2016-03-26_082511

Xét ΔADC và ΔA1DB

có BD = DC (gt)

∠BDA1 = ∠ADC ( đối đỉnh)

AD = DA1 (gt)

Vậy ΔADC = ΔA1DB (c.g.c)

=> AC = BA1 (1)

=> ∠DAC = ∠DA1B

mà ∠DAC = ∠DAB

=> ∠BA1D = ∠BAD

suy ra ΔABA1 cân tại B

=> AB = BA1 (2)

Từ (1) và (2) suy ra AB = AC.

Hay tam giác ABC cân tại A.


Bài 43 trang 73 SGK Toán 7 tập 2 – Hình học

Đố : Có hai con đường cắt nhau và cùng cắt một con sông tại hai điểm khác nhau.

Hãy tìm một địa điểm để xây dựng một đài quan sát sao cho khoảng cách từ đó đến hai con đường và đến bờ sông bằng nhâu. Có tất cả mấy địa điểm như vậy ?

Hướng dẫn giải bài 43:

Hai con đường cắt nhau và cùng cắt một con sông tạo thành tam giác ABC. Địa điểm để xây dựng trạm kiểm lâm thỏa mãn đề bài phải là giao điểm I của ba đường phân giác trong của tam giác ABC và giao điểm K của tia phân giác của góc A và hai tia phân giác của các góc ngoài ở đỉnh D và đỉnh E của tam giác ADE.

******** HẾT ********

 Giải bài 44,45,46 ,47,48,49 ,50,51 trang 76,77 SGK Toán 7 tập 2: Tính chất đường trung trực của một đoạn thẳng

0