27/04/2018, 15:55

Câu 44 trang 163 Sách bài tập (SBT) Toán 9 Tập 1

Cho tam giác ABC vuông tại A. Vẽ đường tròn (B ; BA) và đường tròn (C ; CA), chúng cắt nhau tại điểm D (khác A). Chứng minh rằng CD là tiếp tuyến của đường tròn (B). ...

Cho tam giác ABC vuông tại A. Vẽ đường tròn (B ; BA) và đường tròn (C ; CA), chúng cắt nhau tại điểm D (khác A). Chứng minh rằng CD là tiếp tuyến của đường tròn (B).

Cho tam giác ABC vuông tại A. Vẽ đường tròn (B ; BA) và đường tròn (C ; CA),  chúng cắt nhau tại điểm D (khác A). Chứng minh rằng CD là tiếp tuyến của đường tròn (B).

Giải:

Xét hai tam giác ABC và DBC, ta có:

 BA = BD (bán kính của (B; BA))

CA = CD (bán kính của (C; CA))

BC chung

Suy ra: ∆ABC = ∆DBC (c.c.c)

Suy ra: (widehat {BAC} = widehat {BDC})

Mà (widehat {BAC} = 90^circ ) (gt) ( Rightarrow widehat {BDC} = 90^circ )

Suy ra: CD ⊥ BD tại D

Vậy CD là tiếp tuyến của đường tròn (B; BA).

Sachbaitap.com

0