27/04/2018, 15:55

Câu 56 trang 165 Sách bài tập (SBT) Toán 9 Tập 1

Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A ; AH). Kẻ các tiếp tuyến BD, CE với đường tròn (D, E là các tiếp điểm khác H). Chứng minh rằng: ...

Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A ; AH). Kẻ các tiếp tuyến BD, CE với đường tròn (D, E là các tiếp điểm khác H). Chứng minh rằng:

Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A ; AH). Kẻ các tiếp tuyến BD, CE với đường tròn (D, E là các tiếp điểm khác H). Chứng minh rằng:

a)      Ba điểm D, A, E thẳng hàng;

b)      DE tiếp xúc với đường tròn có đường kính BC.

Giải:

a) Theo tính chất hai tiếp tuyến cắt nhau ta có:

               AB là tia phân giác của góc HAD  

Suy ra: (widehat {DAB} = widehat {BAH})

                  AC là tia phân giác của góc HAE

Suy ra: (widehat {HAC} = widehat {CAE})

Ta có: (widehat {HAD} + widehat {HAE} = 2(widehat {BAH} + widehat {HAC}) = 2.widehat {BAC} = 2.90^circ  = 180^circ )

Vậy ba điểm D, A, E thẳng hàng.

b) Gọi M là trung điểm của BC

Theo tính chất của tiếp tuyến, ta có:

(AD ot BD;AE ot CE)

Suy ra: BD // CE

Vậy tứ giác BDEC là hình thang

Khi đó MA là đường trung bình của hình thang BDEC

Suy ra: (MA // BD  Rightarrow MA ot DE)

Trong tam giác vuông ABC ta có: MA = MB = MC

Suy ra M là tâm đường tròn đường kính BC với MA là bán kính

Vậy DE là tiếp tuyến của đường tròn tâm M đường kính BC.

Sachbaitap.com

0