27/04/2018, 09:35

Câu 118 trang 94 Sách bài tập (SBT) Toán 8 tập 1

Tứ giác ABCD có AB ⊥ CD. Gọi E, F, G, H theo thứ tự là trung điểm của BC, BD, AD, AC. Chứng minh rằng EG = FH. Giải: ...

Tứ giác ABCD có AB ⊥ CD. Gọi E, F, G, H theo thứ tự là trung điểm của BC, BD, AD, AC. Chứng minh rằng EG = FH. Giải:

Tứ giác ABCD có AB ⊥ CD. Gọi E, F, G, H theo thứ tự là trung điểm của BC, BD, AD, AC. Chứng minh rằng EG = FH.

Giải:                                                                         

Trong ∆ BCD ta có:

E là trung điểm của BC (gt)

F là trung điểm của BD (gt)

nên EF là đường trung bình của ∆ BCD

⇒ EF // CD và EF= ({1 over 2})CD (1)

Trong ∆ ACD ta có:

H là trung điểm của AC (gt)

G là trung điểm của AD (gt)

nên HG là đường trung bình của ∆ ACD

⇒ HG // AC và HG = ({1 over 2})AC (2)

Từ (1) và (2) suy ra: EF // HG và EF = HG

Suy ra tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

Mặt khác: EF // CD (chứng minh trên)

                   AB ⊥ CD(gt)

Suy ra EF ⊥ AB

Trong ∆ ABC ta có HE là đường trung bình ⇒ HE // AB

Suy ra: HE ⊥ EF hay (widehat {FEH} = {90^0})

Vậy hình bình hành EFGH là hình chữ nhật.

Sachbaitap.com

0