27/04/2018, 18:17

Câu 1.67 trang 23 sách bài tập Giải tích 12 Nâng cao

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ...

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số

      (y = {{{x^2} - 3x + 1} over x})

b) Với các giá trị nào của m, đồ thị (C) cắt đường thẳng y = m, tại hai điểm phân biệt A và B.

c) Tìm tập hợp trung điểm M của đoạn thẳng AB khi m thay đổi.

Giải

b) Hoành độ giao điểm của đường thẳng y = m và đồ thị (left( C ight)) của hàm số đã cho là nghiệm của phương trình

                     ({{{x^2} - 3x + 1} over x} = m)

                   ( Leftrightarrow {x^2} - left( {m + 3} ight)x + 1 = 0) .            (1)

Đồ thị (C) cắt đường thẳng y = m tại hai điểm phân biệt A và B khi và chỉ khi phương trình  (1) có hai nghiệm phân biệt, tức là

                        ∆ = ({left( {m + 3} ight)^2} - 4 > 0)

                        ( Leftrightarrow {m^2} - 6m + 5 > 0)

                        ( Leftrightarrow m <  - 5) hoặc (m >  - 1) .           (2)

c) Khi đó , tọa độ trung điểm M của đoạn thẳng AB là

              ({x_M} = {{{x_A} + {x_B}} over 2} = {{m + 3} over 2}) và ({y_M} = m.)    (3)

Từ đó suy ra

               ({x_M} = {{{y_{_M}} + 3} over 2}) hay ({y_M} = 2{x_M} - 3.)

Vậy điểm M nằm trên đường thẳng (y = 2x - 3.)

Từ (3) suy ra (m = 2{x_M} - 3.)

Từ (2) ,ta có

                     (left[ matrix{2{x_M} - 3 < 5 hfill cr 2{x_M} - 3 > 1 hfill cr}  ight. Leftrightarrow left[ matrix{{x_M} <  - 1 hfill cr {x_M} > 1. hfill cr}  ight.)

Vậy tập  hợp trung điểm M của đoạn thẳng AB khi m lấy giá trị trong tập hợp (left( { - infty ; - 5} ight) cup ( - 1; + infty )) là phần của đường thẳng

 (y = 2x - 3) ứng với (x in left( { - infty ; - 1} ight) cup (  1; + infty ))

Đó là hai nửa đường thẳng.

Sachbaitap.com

0