Các đặc tính cơ khi hãm động cơ ĐK
Động cơ điện ĐK cũng có ba trạng thái hãm: hãm tái sinh, hãm ngược và hãm động năng. Hãm tái sinh: Động cơ ĐK khi hãm tái sinh: ? > ?o, và có trả năng lượng về lưới. Hãm tái sinh động cơ ĐK thường xảy ...
Động cơ điện ĐK cũng có ba trạng thái hãm: hãm tái sinh, hãm ngược và hãm động năng.
Hãm tái sinh:
Động cơ ĐK khi hãm tái sinh: ? > ?o, và có trả năng lượng về lưới.
Hãm tái sinh động cơ ĐK thường xảy ra trong các trường hợp như: có nguồn động lực quay rôto động cơ với tốc độ ? > ?o (như hình 2-34a,b), hay khi giảm tốc độ động cơ bằng cách tăng số đôi cực (như hình 2-35a,b), hoặc khi động cơ truyền động cho tải có dạng thế năng lúc hạ tải với |?| > |-?o| bằng cách đảo 2 trong 3 pha stato của động cơ (như hình 2-6a,b).
a) Hãm tái sinh khi MSX trở thành nguồn động lực:
Trong quá trình làm việc, khi máy sản xuất (MSX) trở thành nguồn động lực làm quay rôto động cơ với tốc độ ? > ?0, động cơ trở thành máy phát phát năng lượng trả lại nguồn, hay gọi là hãm tái sinh, hình 2-34.
Phương trình đặc tính cơ trong trường hợp này là:
M≈2Mthssth+sths size 12{M approx { {2M rSub { size 8{ ital "th"} } } over { { {s} over {s rSub { size 8{ ital "th"} } } } + { {s rSub { size 8{ ital "th"} } } over {s} } } } } {} (2-83)
Với:ĉ (2-84)
Và: ? > ?0 ; I’2 = Ihts < 0 ; M = Mhts < 0 (tại điểm B)
b) Hãm tái sinh khi giảm tốc độ bằng cách tăng số đôi cực:
Động cơ đang làm việc ở điểm A, với p1, nếu ta tăng số đôi cực lên p2 > p1 thì động cơ sẽ chuyển sang đặc tính có ?2 và làm việc với tốc độ ? > ?2, trở thành máy phát, hay là HTS, hình 2-35.
Phương trình đặc tính cơ trong trường hợp này chỉ khác là:
sth≈R2Σ'Xnm2 ; Mth≈3U1f22ω02Xnm2 ; và ω0=2πf1p2 size 12{s rSub { size 8{ ital "th"} } approx { {R rSub { size 8{2Σ} } rSup { size 8{'} } } over {X rSub { size 8{ ital "nm"2} } } } " ; M" rSub { size 8{"th"} } approx { {3U rSub { size 8{1f} } rSup { size 8{2} } } over {2ω rSub { size 8{"02"} } X rSub { size 8{ ital "nm"2} } } } " ; và "ω rSub { size 8{0} } = { {2πf rSub { size 8{1} } } over {p rSub { size 8{2} } } } } {}; (2-85)
Và: ? > ?02 ; I’2 = Ihts < 0 ; M = Mhts < 0 (đoạn B?02)
c) Hãm tái sinh khi đảo chiều từ trường stato động cơ:
Động cơ đang làm việc ở chế độ động cơ (điểm A), nếu ta đảo chiều từ trường stato, hay đảo 2 trong 3 pha stato động cơ (hay đảo thứ tự pha điện áp stato động cơ), với phụ tải là thế năng, động cơ sẽ đảo chiều quay và làm việc ở chế độ máy phát (hay hãm tái sinh, điểm D), như trên hình 2-36. Như vậy khi hạ hàng ta có thể cho động cơ làm việc ở chế độ máy phát, đồng thời tạo ra mômen hãm để cho động cơ hạ hàng với tốc độ ổn định ?D.
Phương trình đặc tính cơ trong trường hợp này thay ?0 bằng -?0:
sth≈R2Σ'Xnm ; Mth≈3U1f22(−ω0)Xnm ; size 12{s rSub { size 8{ ital "th"} } approx { {R rSub { size 8{2Σ} } rSup { size 8{'} } } over {X rSub { size 8{ ital "nm"} } } } " ; M" rSub { size 8{"th"} } approx { {3U rSub { size 8{1f} } rSup { size 8{2} } } over {2 ( - ω rSub { size 8{0} } ) X rSub { size 8{ ital "nm"} } } } " ; "} {} (2-86)
Và : |?0| > |-?0| , M = Mhts (điểm D, hạ tải ở chế độ HTS).
Hãm ngược động cơ ĐK:
Hãm ngược là khi mômen hãm của động cơ ĐK ngược chiều với tốc độ quay (M ngược chiều với ?). Hãm ngược có hai trường hợp:
a) Hãm ngược bằng cách đưa điện trở phụ lớn vào mạch rôto:
Động cơ đang làm việc ở điểm A, ta đóng thêm điện trở hãm lớn (Rhn> = R2f>) vào mạch rôto, lúc này mômen động cơ giảm (M < Mc) nên động cơ bị giảm tốc độ do sức cản của tải. Động cơ sẽ chuyển sang điểm B, rồi C và nếu tải là thế năng thì động cơ sẽ làm việc ổn định ở điểm D (?D = ?ôđ ngược chiều với tốc độ tại điểm A) trên đặc tính cơ có thêm điện trở hãm Rhn>, và đoạn CD là đoạn hãm ngược, động cơ làm việc như một máy phát nối tiếp với lưới điện (hình 2-37). Động cơ vừa tiêu thụ điện từ lưới vứa sử dụng năng lượng thừa từ tải để tạo ra mômen hãm.
Với:ĉ (2-87)
b) Hãm ngược bằng cách đảo chiều từ trường stato:
Động cơ đang làm việc ở điểm A, ta đổi chiều từ trường stato (đảo 2 trong 3 pha stato động cơ, hay đảo thứ tạ pha điện áp stato), hình 2-38.
Khi đảo chiều vì dòng đảo chiều lớn nên phải thêm điện trở phụ vào để hạn chế không quá dòng cho phép Iđch ? Icp, nên động cơ sẽ chuyển sang điểm B, C và sẽ làm việc xác lập ở D nếu phụ tải ma sát, còn nếu là phụ tảI thế năng thì động cơ sẽ làm việc xác lập ở điểm E. Đoạn BC là đoạn hãm ngược, lúc này dòng hãm và mômen hãm của động cơ.
Với:ĉ (2-88)
s=ω0−ωω0>l size 12{s= { {ω rSub { size 8{0} } - ω} over {ω rSub { size 8{0} } } } >l} {} (2-89)
Hãm động năng động cơ ĐK:
Có hai trường hợp hãm động năng động cơ ĐK:
a) Hãm động năng kích từ độc lập (HĐN KTĐL):
Động cơ đang làm việc với lưới điện (điểm A), khi cắt stato động cơ ĐK ra khỏi lưới điện và đóng vào nguồn một chiều (U1c) độc lập như sơ đồ hình 2-39a.
Do động năng tích lũy trong động cơ, cho nên động cơ vẫn quay và nó làm việc như một máy phát cực ẩn có tốc độ và tần số thay đổi, và phụ tải của nó là điện trở mạch rôto.
Khi cắt stato khỏi nguồn xoay chiều rồi đóng vào nguồn một chiều thì dòng một chiều này sẽ sinh ra một từ trường đứng yên ? so với stato như hình 2-39b. Rôto động cơ do quán tính vẫn quay theo chiều cũ nên các thanh dẫn rôto sẽ cắt từ trường đứng yên, do đó xuất hiện trong chúng một sức điện động e2.
Vì rôto kín mạch nên e2 lại sinh ra i2 cùng chiều. Chiều của e2 và i2 xác định theo qui tắc bàn tay phải: “+” khi e2 có chiều đi vào và “•” là đi ra. Tương tác giữa dòng i2 và ? tạo nên sức từ động F có chiều xác định theo qui tắc bàn tay trái (hình 2-39b).
Chú ý rằng, trong trường hợp hãm ngược vì:
Lực F sinh ra mômen hãm Mh có chiều ngược với chiều quay của rôto ? làm cho rôto quay chậm lai và sức điện động e2 cũng giảm dần.
* Để thành lập phương trình đặc tính cơ của động cơ ĐK khi hãm động năng ta thay thế một cách đẳng trị chế độ máy phát đồng bộ có tần số thay đổi bằng chế độ động cơ không đồng bộ. Nghĩa là cuộn dây stato thực tế đấu vào nguồn một chiều nhưng ta coi như đấu vào nguồn xoay chiều.
Điều kiện đẳng trị ở đây là sức từ động do dòng điện một chiều (Fmc) và dòng điện xoay chiều đẳng trị (F1) sinh ra là như nhau:
F1 = Fmc (2-90)
Sức từ động xoay chiều do dòng đẳng trị (I1) sinh ra là:
F1=322.w1.I1 size 12{F rSub { size 8{1} } = { {3} over {2} } sqrt {2} "." w rSub { size 8{1} } "." I rSub { size 8{1} } } {} (2-91)
Sức từ động một chiều do dòng một chiều thực tế sinh ra phụ thuộc vào cách đấu day của mạch stato khi hãm và biểu diễn tổng quát như sau:
Fmc = a.w1.Imc (2-92)
Cân bằng (2-91) và (2-92) và rút ra:
I1=a.w1322.w1Imc=A.Imc size 12{I rSub { size 8{1} } = { {a "." w rSub { size 8{1} } } over { { {3} over {2} } sqrt {2} "." w rSub { size 8{1} } } } I rSub { size 8{ ital "mc"} } =A "." I rSub { size 8{ ital "mc"} } } {} (2-93)
Trong đó: a, A là các hệ số phụ thuộc sơ đồ nối mạch stato khi hãm động năng như bảng (2-2).
Ví dụ, theo bảng (2-2), sơ đồ nối dây và đồ thị vectơ (a):
Fmc=2Imc.w1cos30o=3.w1.Imc size 12{F rSub { size 8{ ital "mc"} } =2I rSub { size 8{ ital "mc"} } "." w rSub { size 8{1} } "cos""30" rSup { size 8{o} } = sqrt {3} "." w rSub { size 8{1} } "." I rSub { size 8{ ital "mc"} } } {} (2-94)
Và: a =Ġ;ĉ
Đối với các sơ đồ đấu dây khác nhau của mạch stato, ta có thể xác định hệ số A theo bảng 2-2.
Bảng 2-2
Dựa vào sơ đồ thay thế một pha của động cơ trong chế độ hãm động năng để xây dựng đặc tính cơ (hình 2-40).
ở chế độ động cơ ĐK thì điện áp đặt vào stato không đổi, đó là nguồn áp, dòng từ hóaĠ từ thông ? không đổi, còn dòng điện stato I1, dòng điện stato I2 biến đổi theo độ trượt s.
Còn ở trạng thái hãm động năng kích từ độc lập, vì dòng điện một chiều Imc không đổi nên dòng xoay chiều đẳng trị cũng không đổi, do đó nguồn cấp cho stato là nguồn dòng. Mặt khác, vì tổng trở mạch rôto khi hãm phụ thuộc vào tốc độ nên dòng rôto I2 và dòng từ hóa I? đều thay đổi, vậy nên từ thông ? ở stato thay đổi theo tốc độ.
I1I’2E’2XμIμX’2R’2 / ω*R’2f / ω*H×nh 2-40: S¬ ®å thay thÕ khi h·m ®éng n¨ng §K
Trong chế độ làm việc của động cơ ĐK, độ trượt s là tốc độ cắt tương đối của thanh dẫn rôto với từ trường stato, ở trạng thái hãm động năng nó được thay bằng tốc độ tương đối:
ω=ωωo size 12{ω rSup { size 8{*} } = { {ω} over {ω rSub { size 8{o} } } } } {} (2-95)
E’2I1φ2φ2I’2IμH×nh 2-41: §å thÞ vect¬dßng ®iÖn khi H§NTõ s¬ ®å thay thÕ h×nh 2-39, ta cã ®å thÞ vect¬ dßng ®iÖn nh h×nh 2-41.
Từ sơ đồ thay thế ta có:
I2'=E2'R2Σ'ω2+X2'2=E2'.ωR2Σ'2+(X2'.ω)2 size 12{I rSub { size 8{2} } rSup { size 8{'} } = { {E rSub { size 8{2} } rSup { size 8{'} } } over { sqrt { left ( { {R rSub { size 8{2Σ} } rSup { size 8{'} } } over {ω rSup { size 8{*} } } } right ) rSup { size 8{2} } +X rSub { size 8{2} } rSup { size 8{'2} } } } } = { {E rSub { size 8{2} } rSup { size 8{'} } "." ω rSup { size 8{*} } } over { sqrt {R rSub { size 8{2Σ} } rSup { size 8{'2} } + ( X rSub { size 8{2} } rSup { size 8{'} } "." ω rSup { size 8{*} } ) rSup { size 8{2} } } } } } {} (2-96)
Hay: I2'=Iμ.Xμ.ωR2Σ'2+(X2'.ω)2 size 12{I rSub { size 8{2} } rSup { size 8{'} } = { {I rSub { size 8{μ} } "." X rSub { size 8{μ} } "." ω rSup { size 8{*} } } over { sqrt {R rSub { size 8{2Σ} } rSup { size 8{'2} } + ( X rSub { size 8{2} } rSup { size 8{'} } "." ω rSup { size 8{*} } ) rSup { size 8{2} } } } } } {} (2-97)
Trong đó:ĉ
Theo đồ thị vectơ ta có:
I12=(Iμ+I2'sinϕ2)2+(I2'sinϕ2)2 size 12{I rSub { size 8{1} } rSup { size 8{2} } = ( I rSub { size 8{μ} } +I rSub { size 8{2} } rSup { size 8{'} } "sin"ϕ rSub { size 8{2} } ) rSup { size 8{2} } + ( I rSub { size 8{2} } rSup { size 8{'} } "sin"ϕ rSub { size 8{2} } ) rSup { size 8{2} } } {};
Hay I12=Iμ2+I2'2+2Iμ.I2'sinϕ2)2 size 12{I rSub { size 8{1} } rSup { size 8{2} } =I rSub { size 8{μ} } rSup { size 8{2} } +I rSub { size 8{2} } rSup { size 8{'2} } +2I rSub { size 8{μ} } "." I rSub { size 8{2} } rSup { size 8{'} } "sin"ϕ rSub { size 8{2} } ) rSup { size 8{2} } } {}; (2-98)
Trong đó:
sinϕ2=X2'.ωR2Σ'2+(X2'.ω)2 size 12{"sin"ϕ rSub { size 8{2} } = { {X rSub { size 8{2} } rSup { size 8{'} } "." ω rSup { size 8{*} } } over { sqrt {R rSub { size 8{2Σ} } rSup { size 8{'2} } + ( X rSub { size 8{2} } rSup { size 8{'} } "." ω rSup { size 8{*} } ) rSup { size 8{2} } } } } } {} (2-99)
ThayĠ và sin?2 vào (2-98), ta có:
I12=Iμ2+Iμ2Xμ2ω*2R2Σ'2+(X2'ω)2+2Iμ2XμX2'ω*2R2Σ'2+(X2'ω)2 size 12{I rSub { size 8{1} } rSup { size 8{2} } =I rSub { size 8{μ} } rSup { size 8{2} } + { {I rSub { size 8{μ} } rSup { size 8{2} } X rSub { size 8{μ} } rSup { size 8{2} } ω rSup { size 8{"*2"} } } over {R rSub { size 8{"2Σ"} } rSup { size 8{"'2"} } + ( X rSub { size 8{2} } rSup { size 8{'} } ω rSup { size 8{*} } ) rSup { size 8{2} } } } + { {"2I" rSub { size 8{μ} } rSup { size 8{2} } X rSub { size 8{μ} } X rSub { size 8{2} } rSup { size 8{'} } ω rSup { size 8{"*2"} } } over {R rSub { size 8{"2Σ"} } rSup { size 8{"'2"} } + ( X rSub { size 8{2} } rSup { size 8{'} } ω rSup { size 8{*} } ) rSup { size 8{2} } } } } {} (2-100)
Từ đó rút ra:
ω=R2Σ'I1Iμ2−1(X2'+Xμ)2−I1Iμ2X2'2 size 12{ω rSup { size 8{*} } =R rSub { size 8{2Σ} } rSup { size 8{'} } sqrt { { { left ( { {I rSub { size 8{1} } } over {I rSub { size 8{μ} } } } right ) rSup { size 8{2} } - 1} over { ( X rSub { size 8{2} } rSup { size 8{'} } +X rSub { size 8{μ} } ) rSup { size 8{2} } - left ( { {I rSub { size 8{1} } } over {I rSub { size 8{μ} } } } right ) rSup { size 8{2} } X rSub { size 8{2} } rSup { size 8{'2} } } } } } {} (2-101)
Từ các biểu thức (2-98)Ġ (2-100), sau khi biến đổi ta có:
I2'=Iμ.Xμ.ωR2Σ'2+(X2'+Xμ)2.ω2 size 12{I rSub { size 8{2} } rSup { size 8{'} } = { {I rSub { size 8{μ} } "." X rSub { size 8{μ} } "." ω rSup { size 8{*} } } over { sqrt {R rSub { size 8{2Σ} } rSup { size 8{'2} } + ( X rSub { size 8{2} } rSup { size 8{'} } +X rSub { size 8{μ} } ) rSup { size 8{2} } "." ω rSup { size 8{*2} } } } } } {} (2-102)
Tương tự như đã xét ở động cơ ĐK, ta xác định được mômen:
M=3I2'2R2Σ'ω2ωo size 12{M= { {3I rSub { size 8{2} } rSup { size 8{'2} } { {R rSub { size 8{2Σ} } rSup { size 8{'} } } over {ω rSup { size 8{2} } } } } over {ω rSub { size 8{o} } } } } {} (2-103)
Hay: M=3I2'2XμR2Σ'ωωo[R2Σ'2+(X2'+Xμ)2ω2] size 12{M= { {"3I" rSub { size 8{2} } rSup { size 8{"'2"} } X rSub { size 8{μ} } R rSub { size 8{2Σ} } rSup { size 8{'} } ω rSup { size 8{*} } } over {ω rSub { size 8{o} } [ R rSub { size 8{"2Σ"} } rSup { size 8{"'2"} } + ( X rSub { size 8{2} } rSup { size 8{'} } +X rSub { size 8{μ} } ) rSup { size 8{2} } ω rSup { size 8{*} rSup { size 8{2} } } ] } } } {} (2-104)
Đường cong M = f(?*) cũng được khảo sát tương tự như với đường cong đặc tính cơ của động cơ ĐK và cho ta những kết quả:
ωth=R2Σ'Xμ+X2' size 12{ω rSub { size 8{ ital "th"} } rSup { size 8{*} } = { {R rSub { size 8{2Σ} } rSup { size 8{'} } } over {X rSub { size 8{μ} } +X rSub { size 8{2} } rSup { size 8{'} } } } } {} (2-105)
Mth.th=3I12Xμ22ωo(Xμ+X2') size 12{M rSub { size 8{ ital "th" "." ital "th"} } = { {3I rSub { size 8{1} } rSup { size 8{2} } X rSub { size 8{μ} } rSup { size 8{2} } } over {2ω rSub { size 8{o} } ( X rSub { size 8{μ} } +X rSub { size 8{2} } rSup { size 8{'} } ) } } } {} (2-106)
Và:ĉ (2-107)
Biểu thức (2-107) là phương trình đặc tính cơ của động cơ ĐK khi hãm động năng kích từ độc lập.
Ta thấy rằng, khi thay đổi R2f thìĠ thay đổi, nênĠ thay đổi, còn Mth = const, còn khi thay đổi dòng điện xoay chiều đẳng trị I1, nghĩa là thay đổi dòng điện một chiều Imc, thì mômen Mth thay đổi, cònĠ = const.
Các đường đặc tính hãm động năng được biểu diễn như trên hình 2-42. Trên đó: đường (1) và (2) có cùng điện trởĠ nhưng có Mth2 > Mth1 nên dòng một chiều tương ứng Imc2 > Imc1.
Như vậy khi thay đổi nguồn một chiều đưa vào stato động cơ khi hãm động năng thì sẽ thay đổi được mômen tới hạn.
H×nh 2-42: §Æc tÝnh c¬ cña ®éng c¬ §K khi H§N-KT§Lω* ωω0Mth2 Mth1 0 MMc(ω)A (®/c)(3)H§N(2)(1)ω*th2ω*th1
Còn đường (2) và (3) thì có cùng dòng điện một chiều nhưng điện trởĠ.
Như vậy khi thay đổi điện trở phụ trong mạch rôto hoặc dòng điện một chiều trong stato động cơ khi hãm động năng thì sẽ thay đổi được vị trí của đặc tính tính cơ.
b) Hãm động năng tự kích từ:
Động cơ đang hoạt động ở chế độ động cơ (tiếp K kín, tiếp điểm H hở), khi cho K hở, H kín lại, động cơ sẽ chuyển sang chế độ hãm động năng tự kích từ. Khi đó, dòng điện Imc không phải từ nguồn điện một chiều bên ngoài, mà sử dụng ngay năng lượng của động cơ thông qua bộ chỉnh lưu ở mạch rôto (hình 2-43a) hoặc bộ tụ điện ở mạch stato.
H×nh 2-43: a)S¬ ®å nèi d©y §K khi H§N TKTb) S¬ ®å nguyªn lý t¹o m«men h·m H§N TKT++++ΦFFe2i2RωMhb)§K~KMSXHR®chHa)CL
* Ví dụ 2-6:
Hãy lựa chọn đặc tính cơ hãm động năng và xác định các thông số mạch hãm, gồm dòng điện một chiều Imc cấp vào cuộn dây stato và điện trở phụ Rh nối vào mạch rôto của động cơ không đồng bộ rôto dây quấn sao cho mômen hãm cực đại đạt được Mh.max = 2,5Mđm và hiệu quả hãm cao. Số liệu cho trước: Động cơ 11KW; 220V; 953vg/ph, ? = Mth/Mđm = 3,1; cos?đm = 0,71; cos?o (không tải) = 0,24; I1đm = 28,4A; I1.0 (không tải) = 19,2A; R1 = 0,415?; X1 = 0,465?; E2nm(điện áp dây) = 200V; I2đm = 35,4A; r2 = 0,132?; X2 = 0,27?; và Ke = 1,84.
* Giải:
Trước hết, xác định thêm các thông số của động cơ:
Tốc độ định mức:
ω đm = n đm 9, 55 = 953 9, 55 = 99 , 8 rad/s size 12{ω rSub { size 8{ ital "đm"} } = { {n rSub { size 8{ ital "đm"} } } over {9,"55"} } = { {"953"} over {9,"55"} } ="99",8" rad/s"} {}
Trang 82
Tốc độ từ trường quay: ?o = 1000/9,55 = 104,7 rad/s
Mômen định mức:Ġ
Độ trượt định mức:Ġ
Điện kháng mạch hóa X? được xác định theo s.đ.đ. và dòng điện không tải của stato (coi dòng không tải bằng dòng từ hóa):
(với:Ġ)
Điện kháng rôto qui đổi về stato:
X 2 ' = X 2 . K e 2 = 0, 27 . 1, 84 2 = 0, 92 Ω size 12{X rSub { size 8{2} } rSup { size 8{'} } =X rSub { size 8{2} } "." K rSub { size 8{e} } rSup { size 8{2} } =0,"27" "." 1,"84" rSup { size 8{2} } =0,"92" %OMEGA } {}
Theo yêu cầu của đề bài ta có thể chọn đặc tính hãm động năng có mômen tới hạn là: Mth.đn = Mh.max = 2,5Mđm.
Tốc độ tới hạnĠ có thể chọn bằng tốc độ hãm ban đầu:
ω th = ω bđ = ω đm / ω o size 12{ω rSub { size 8{ ital "th"} } rSup { size 8{*} } =ω rSub { size 8{ ital "bđ"} } rSup { size 8{*} } =ω rSub { size 8{ ital "đm"} } /ω rSub { size 8{o} } } {}
Khi đó ta có đặc tính hãm là đường 2 trên hình 2-38. Rõ ràng đặc tính này có hiệu quả hãm thấp vì mômen giảm gần như tuyến tính từ tốc độ ban đầu ?bđ = ?đm cho đến ? = 0.
Để cho việc hãm có hiệu quả cao, ta cần tạo ra một đặc tính cơ đảm bảo bao một diện tích lớn nhất giữa nó với trục tung của đồ thị (vùng gạch sọc trên hình 2-44). Khi đó mômen hãm trung bình trong toàn bộ quá trình hãm sẽ là lớn nhất. Việc tính toán cho thấy đặc tính cơ dạng này có tốc độ tới hạn:Ġ= 0,407.
Vậy đặc tính cơ hãm động năng được chọn là đường (1) trên hình 2-44.
ω
ω00,05
ωb® =ω®m
ω*th.t
Mh.max = Mth.®n M®m 3,1M®m M
H×nh 2-44: §Æc tÝnh c¬ TN vµ ®Æc tÝnh c¬ h·m §N
Từ biểu thức của mômen tới hạn hãm động năng (biểu thức 2-106) ta rút ra biểu thức tính dòng điện xoay chiều đẳng trị I1:
I 1 = M th . đn . 2ω o ( X μ + X 2 ' ) 3X μ 2 = = 2,5 . 110 , 2 . 2 . 104 , 7 . ( 11 , 05 + 0, 92 ) 3 . 11 , 05 2 = 43 , 4A alignl { stack { size 12{I rSub { size 8{1} } = sqrt { { {M"" lSub { size 8{ ital "th" "." ital "đn"} } "." 2ω rSub { size 8{o} } ( X rSub { size 8{μ} } +X rSub { size 8{2} } rSup { size 8{'} } ) } over {3X rSub { size 8{μ} } rSup { size 8{2} } } } } ={}} {} # " "= sqrt { { {2,5 "." "110",2 "." 2 "." "104",7 "." ( "11","05"+0,"92" ) } over {3 "." "11","05" rSup { size 8{2} } } } } ="43",4A {} } } {}
Qua hệ số tỷ lệ A của sơ đồ nối dây stato vào nguồn điện một chiều khi hãm, ví dụ chọn sơ đồ 1 trong bảng 2-2, ta có:Ġ, ta xác định được dòng điện một chiều cần thiết:
Imc = I1/A = 43,4/0,815 = 53A
Từ biểu thức của tốc độ tới hạn (2-74) ta xác định được giá trị điện trở trong mạch rôto khi hãm:
R 2t ' = ω th ( X μ + X 2 ' ) = 0, 407 . ( 11 , 05 + 0, 92 ) = 4, 87 Ω size 12{R rSub { size 8{2t} } rSup { size 8{'} } =ω rSub { size 8{ ital "th"} } rSup { size 8{*} } ( X rSub { size 8{μ} } +X rSub { size 8{2} } rSup { size 8{'} } ) =0,"407" "." ( "11","05"+0,"92" ) =4,"87" %OMEGA } {}
Tương ứng với giá trị trước khi qui đổi là:
R 2t = R 2t ' / K e 2 = 4, 87 / 1, 84 2 = 1, 44 Ω size 12{R rSub { size 8{2t} } =R rSub { size 8{2t} } rSup { size 8{'} } /K rSub { size 8{e} } rSup { size 8{2} } =4,"87"/1,"84" rSup { size 8{2} } =1,"44" %OMEGA } {}
Vậy điện trở phụ cần nối vào mạch rôto là:
Rh = R2t - r2 = 1,44 - 0,132 = 1,308 Ω
Giả sử động cơ đang làm việc ở điểm A theo chiều quay thuận trên đặc tính cơ tự nhiên thuận với tải Mc:
M=2Mth(1+asth)ssth+sths+2asth size 12{M= { {2M rSub { size 8{ ital "th"} } ( 1+ ital "as" rSub { size 8{ ital "th"} } ) } over { { {s} over {s rSub { size 8{ ital "th"} } } } + { {s rSub { size 8{ ital "th"} } } over {s} } +2 ital "as" rSub { size 8{ ital "th"} } } } } {} (2-108)
ωω00 Mc MA (®/cT)b)-ω0H×nh 2-45: a) S¬ ®å nèi d©y §K khi ®¶o 2 trong 3 pha stato ®éng c¬ §Kb) §Æc tÝnh c¬ khi lµm viÖc thuËn (A) vµ ngîc (B)§K~R2fa)MSXM’c sthNB (®/cN)
Muốn đảo chiều động cơ, ta có thể đảo chiều từ trường stato (±?o), hay đảo thứ tự pha điện áp (u1) động cơ ĐK (thường đảo 2 trong 3 pha stato). Khi đảo chiều, dòng đảo chiều rất lớn nên phải cho thêm điện trở phụ vào mạch rôto để hạn chế IđchĠ Icp.
Khi động cơ ĐK làm việc ở chiều ngược lại thì Mth sẽ đảo dấu và sth > 1 như hình 2-45:
Động cơ quay ngược chiều tương ứng với điểm B trên đặc tính cơ tự nhiên bên ngược, hoặc trên đặc tính cơ nhân tạo ngược.
Đặc tính cơ của động cơ ĐĐB:
Khi đóng stato của động cơ đồng bộ vào lưới điện xoay chiều có tần số f1 không đổi, động cơ sẽ làm việc với tốc độ đồng bộ không phụ thuộc vào tải:
ω0=2πf1p size 12{ω rSub { size 8{0} } = { {2πf rSub { size 8{1} } } over {p} } } {} (2-109)
§KB~R®cha)MSX+ U®k -0 M®m Mωω0b)H×nh 2-46: S¬ ®å nèi d©y vµ ®Æc tÝnh c¬ cña ®éng c¬ §§B
Như vậy đặc tính cơ của động cơ ĐĐB này tong phạm vi mômen cho phép M ? Mmax là đường thẳng song song với trục hoành, với độ cứng ? = ? và được biểu diễn trên hình 2 -46.
Tuy nhiên khi mômen vượt quá trị số cực đại cho phép M > Mmax thì tốc độ động cơ sẽ lệch khỏi tốc độ đồng bộ.
Đặc tính góc của động cơ ĐĐB:
Trong nghiên cứu tính toán hệ truyền động dùng động cơ ĐĐB, người ta sử dụng một đặc tính quan trọng là đặc tính góc. Nó là sự phụ thuộc giữa mômen của động cơ với góc lệch vectơ điện áp pha của lưới Ul và vectơ sức điện động cảm ứng E trong dây quấn stato do từ trường một chiều của rôto sinh ra:
M = f(θ)
φ - θ Ulsinθ ABCθ φjixsH×nh 2-47: §å thÞ vect¬ cña m¹ch stato cña ®éng c¬ §§B
Đặc tính này được xây dựng bằng cách sử dụng đồ thị vectơ của mạch stato vẽ trên hình 2-47 với giả thiết bỏ qua điện trở tác dụng của cuộn dây stato (r1 ? 0).
Trên đồ thị vectơ hình 2-47:
Ul - điện áp pha của lưới (V)
E - sức điện động pha stato (V)
I - dòng điện stato (A)
? - goác lệch giữa Ul và E;
? - góc lệch giữa vectơ điện áp Ul và dòng điện I.
Xs = x? + x1 - điện kháng pha của stato là tổng của điện kháng
mạch từ hóa x? và điện kháng cuộn dây 1 pha của stato x1 (?)
Từ đồ thị vectơ ta có:
Ulcosϕ=Ecos(ϕ−θ) size 12{U rSub { size 8{l} } "cos"ϕ=E"cos" ( ϕ - θ ) } {} (2-110)
Từ tam giác ABC tìm được:
cos(ϕ−θ)=CBCA=UlsinθIxs size 12{"cos" ( ϕ - θ ) = { { ital "CB"} over { ital "CA"} } = { {U rSub { size 8{l} } "sin"θ} over { ital "Ix" rSub { size 8{s} } } } } {} (2-111)
Thay (2-110) vào (2-111) ta được:
U1cosϕ=EUlsinθIxs size 12{U rSub { size 8{1} } "cos"ϕ=E { {U rSub { size 8{l} } "sin"θ} over { ital "Ix" rSub { size 8{s} } } } } {} (2-112)
Hay: U1Icosϕ=EUlxssinθ size 12{U rSub { size 8{1} } I"cos"ϕ= { { ital "EU" rSub { size 8{l} } } over {x rSub { size 8{s} } } } "sin"θ} {} (2-113)
Vế trái của (2-113) là công suất 1 pha của động cơ.
Vậy công suất 3 pha của động cơ:
P=3EUlxssinθ size 12{P=3 { { ital "EU" rSub { size 8{l} } } over {x rSub { size 8{s} } } } "sin"θ} {} (2-114)
Mômen của động cơ:
M=Pω0=3EUlω0xssinθ size 12{M= { {P} over {ω rSub { size 8{0} } } } = { {3 ital "EU" rSub { size 8{l} } } over {ω rSub { size 8{0} } x rSub { size 8{s} } } } "sin"θ} {} (2-115)
(2-115) là phương trình đặc tính góc của động cơ ĐĐB. Theo đó ta có đặc tính góc là đường cong hình sin như trên hình 2-48.
Khi ? = ?/2 ta có biên độ cực đại của hình sin là:
Mm=3EUlω0xs size 12{M rSub { size 8{m} } = { {3 ital "EU" rSub { size 8{l} } } over {ω rSub { size 8{0} } x rSub { size 8{s} } } } } {} (2-116)
Phương trình (2-115) có thể viết gọn hơn:
M = Mmsinθ (2-117)
Mm đặc trưng cho khả năng quá tảI của động cơ. Khi tải tăng góc lệch pha ? tăng. Nếu tải tăng quá mứcĠ, mômen giảm.
Động cơ đồng bộ thường làm việc định mức ở trị số của góc lệch ? = 20oĠ 25o. Hệ số tải về mômen tương ứng sẽ là:
λ M = M m M đm = 2 ÷ 2,5 size 12{λ rSub { size 8{M} } = { {M rSub { size 8{m} } } over {M rSub { size 8{ ital "đm"} } } } =2 div 2,5} {}
Những điều đã phân tích ở trên chỉ đúng với những động cơ đồng bộ cực ẩn và mômen chỉ xuất hiện khi rôto có kích từ. Còn đối với những động cơ đồng bộ cực lồi, do sự phân bố khe hở không khí không đều giữa rôto và stato nên trong máy xuất hiện mômen phản kháng phụ. Do đó đặc tính góc có biến dạng ít nhiều, như đường nét đứt trên hình 2-48.
MmM0 π/2 π 2π θ3π/2H×nh 2-48: §Æc tÝnh gãc cña ®éng c¬ ®ång bé
Câu hỏi ôn tập
1. Có thể biểu diễn phương trình đặc tính cơ của động cơ một chiều kích từ độc lập bằng mấy dạng ? hảy viết các dạng phương trình đó ? Giải thích các đại lượng trong phương trình và cách xác định các đại lượng đó ? Vẽ dạng đặc tính cơ điện và đặc tính cơ ĐMđl ?
2. Đơn vị tương đối là gì ? Đơn vị tương đối của các đại lượng điện, cơ của động cơ ĐMđl được xác định như thế nào ? Viết phương trình đặc tính cơ ở dạng đơn vị tương đối ? ý nghĩa của việc sử dụng phương trình dạng đơn vị tương đối ?
3. Độ cứng đặc tính cơ của ĐMđl có biểu thức xác định như thế nào ? Giá trị tương đối của nó ? Biểu thị quan hệ giữa độ cứng với sai số tốc độ và điện trở mạch phần ứng (theo đơn vị tương đối). ý nghĩa của độ cứng đặc tính cơ ?
4. Cách vẽ đặc tính cơ của ĐMđl ? Cách xác định các đại lượng: Mđm, ?đm, ?0, Inm, Mnm, … để vẽ đường đặc tính này ?
5. Có những thông số nào ảnh hưởng đến dạng đặc tính cơ của ĐMđl ? họ đặc tính cơ nhân tạo khi thay đổi thông số đó ? Sơ đồ nối dây, phương trình đặc tính, dạng của các họ đặc tính nhân tạo, nhận xét về ứng dụng của chúng ?
6. Tại sao khi khởi động ĐMđl thường phải đóng thêm điện trở phụ vào mạch phần ứng động cơ ? Các dòng điện khởi động lớn nhất và nhỏ nhất khi khởi động ĐMđl thường khống ở mức nào ? Vẽ các đặc tính cơ khi khởi động ĐMđl với 2 cấp điện trở khởi động ?
7. Động cơ ĐMđl có mấy phương pháp hãm ? Điều kiện để xảy ra các trạng thái hãm đó ? Sơ đồ nối dây động cơ khi thực hiện các trạng thái hãm ? ứng dụng thực tế của các trạng thái hãm đó ? Giải thích quan hệ về chiều tác dụng của các đại lượng điện và chiều truyền năng lượng trong hệ ở các trạng thái hãm ?
8. Sự khác nhau giữa động cơ một chiều kích từ nối tiếp với ĐMđl về cấu tạo, từ thông, dạng đặc tính cơ, các phương pháp hãm ? Có nhận xét gì về đặc điểm và khả năng ứng dụng của ĐMnt thực tế ?
9. Có thể biểu thị phương trình đặc tính cơ của động cơ không đồng bộ bằng những biểu thức nào ? Viết các phương trình đó, giải thích các đại lượng và cách xác định các đại lượng đó khi viết phương trình và dựng đặc tính cơ ?
10. Cách vẽ đặc tính cơ tự nhiên theo các số liệu định mức trong catalo: dạng chính xác, dạng gần đúng và dạng tuyến tính hóa ?
11. Biểu thức xác định độ cứng đặc tính cơ ? Biểu thị quan hệ giữa độ cứng đặc tính cơ với độ trượt định mức và điện trở mạch rôto của động cơ ĐK ?
12. Có những thông số nào ảnh hưởng đến dạng đặc tính cơ của động cơ ĐK ? Cách nối dây động cơ ĐK để tạo ra đặc tính cơ nhân tạo khi thay đổi các thông số này ? Dạng các hộ đặc tính cơ nhân tạo và ứng dụng thực tế của chúng ?
13. Vẽ các dạng đặc tính cơ khi khởi động động cơ ĐK hai cấp tốc độ ? Khi khởi động động cơ ĐK, các đại lượng: hệ số trượt tới hạn, mômen tới hạn thay đổi như thế nào ? Các biểu thức xác định các đại lượng đó ? Thường mômen khởi động lớn nhất của động cơ ĐK bằng bao nhiêu mômen tới hạn của động cơ ?
14. Động cơ ĐK có mấy trạng thái hãm ? Cách nối dây động cơ để thực hiện các trạng thái hãm và điều kiện để xảy ra hãm ? Giải thích quan hệ năng lượng giữa máy sản xuất (tải của động cơ) và động cơ ở từng trạng thái hãm ? ứng dụng thực tế của các trạng thái hãm ?
15. Giải thích ý nghĩa của đặc tính cơ và đặc tính goác của động cơ đồng bộ ? Sự phụ thuộc giữa mômen cực đại của động cơ với điện áp lưới ? Mômen cực đại ở đặc tính góc có ý nghĩa như thế nào với đặc tính cơ của động cơ ĐĐB ?