11/01/2018, 13:33

Bài 9 trang 17 sgk hình học lớp 10

Bài 9 trang 17 sgk hình học lớp 10 Bài 9. Cho tam giác đều ABC có trọng tâm O và M là một điểm tùy ý trong tam giác. Gọi D,E,F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB. ...

Bài 9 trang 17 sgk hình học lớp 10

Bài 9. Cho tam giác đều ABC có trọng tâm O và M là một điểm tùy ý trong tam giác. Gọi D,E,F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB.

Bài 9. Cho tam giác đều (ABC) có trọng tâm (O) và (M) là một điểm tùy ý trong tam giác. Gọi (D,E,F) lần lượt là chân đường vuông góc hạ từ (M) đến (BC, AC, AB). Chứng minh rằng:

          (overrightarrow {MD}  + overrightarrow {ME}  + overrightarrow {MF}  = {3 over 2}overrightarrow {MO} )

Giải

Qua M kẻ các đường thẳng song song với các cạnh của tam giác

A1B1 // AB;  A2C2 // AC;   B2C1 // BC.

Dễ thấy các tam giác MB1C2; MA1C1;MA2B2 đều là các tam giác đều. Ta lại có MD B1C2 nên MD cũng là trung điểm thuộc cạnh B1Ccủa tam giác MB1C2

Ta có 2 = 

Tương tự: 2 = 

               2 = +

=> 2( ++) = (+) + ( + ) + (+)

Tứ giác là hình bình hành nên

            = 

Tương tự: + = 

                 + = 

=> 2( ++) = ++

vì O là trọng tâm bất kì của tam giác và M là một điểm bất kì nên

 ++ = 3.

Cuối cùng ta có: 

2( ++) = 3;

=>  ++ = 

0