Bài 60 trang 166 SBT Toán 9 Tập 1
Bài 6: Tính chất của hai tiếp tuyến cắt nhau Bài 60 trang 166 Sách bài tập Toán 9 Tập 1: Cho tam giác ABC, đường tròn (K) bàng tiếp trong góc A tiếp xúc với các tia AB và AC theo thứ tự tại E và F. Cho BC = a, AC = b, AB = c. Chứng minh rằng: Lời giải: a. Gọi ...
Bài 6: Tính chất của hai tiếp tuyến cắt nhau
Bài 60 trang 166 Sách bài tập Toán 9 Tập 1: Cho tam giác ABC, đường tròn (K) bàng tiếp trong góc A tiếp xúc với các tia AB và AC theo thứ tự tại E và F. Cho BC = a, AC = b, AB = c. Chứng minh rằng:
Lời giải:
a. Gọi D là tiếp điểm của đường tròn (K) với cạnh BC.
Theo tính chất hai tiếp tuyến cắt nhau ta có:
BE = BD; CD = CF
AE = AB + BE
AF = AC + CF
Suy ra: AE + AF = AB + BE + AC + CF
= AB + AC + (BD + DC)
= AB + AC + BC = c + b + a
Mà: AE = AF (tính chất hai tiếp tuyến cắt nhau)
Các bài giải bài tập sách bài tập Toán 9 (SBT Toán 9)