08/05/2018, 21:49

Bài 76 trang 169 SBT Toán 9 Tập 1

Bài 8: Vị trí tương đối của hai đường tròn Bài 76 trang 169 Sách bài tập Toán 9 Tập 1: Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ các đường kính AOB, AO’C. Gọi DE là tiếp tuyến chung của hai đường tròn (D ∈ (O), E ∈ (O’)). Gọi M là giao điểm ...

Bài 8: Vị trí tương đối của hai đường tròn

Bài 76 trang 169 Sách bài tập Toán 9 Tập 1: Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ các đường kính AOB, AO’C. Gọi DE là tiếp tuyến chung của hai đường tròn (D ∈ (O), E ∈ (O’)). Gọi M là giao điểm của BD và CE.

a. Tính số đo góc DAE. b. Tứ giác ADME là hình gì? Vì sao ? c. Chứng minh rằng MA là tiếp tuyến chung của hai đường tròn.

Lời giải:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a. Kẻ tiếp tuyến chung tại A cắt DE tại I

Trong đường tròn (O) ta có:

IA = ID (tính chất hai tiếp tuyến cắt nhau)

Trong đường tròn (O’) ta có :

IA = IE (tính chất hai tiếp tuyến cắt nhau)

Suy ra : IA = ID = IE = (1/2).DE

Tam giác ADE có đường trung tuyến AI ứng với cạnh DE và bằng nửa cạnh DE nên tam giác ADE vuông tại A

Suy ra: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

b. Tam giác ABD nội tiếp trong đường tròn (O) có AB là đường kính nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác AEC nội tiếp trong đường tròn (O’) có AC là đường kính nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Mặt

0