Bài 88 trang 172 SBT Toán 9 Tập 1
Ôn tập chương II Bài 88 trang 172 Sách bài tập Toán 9 Tập 1: Cho nửa đường tròn tâm O có đường kính AB. Gọi M là điểm bất kì thuộc nửa đường tròn, H là chân đường vuông góc kẻ từ M đén AB. Vẽ đường tròn (M; MH). Kẻ các tiếp tuyến AC, BD với đường tròn tâm M (C và D là các tiếp điểm ...
Ôn tập chương II
Bài 88 trang 172 Sách bài tập Toán 9 Tập 1: Cho nửa đường tròn tâm O có đường kính AB. Gọi M là điểm bất kì thuộc nửa đường tròn, H là chân đường vuông góc kẻ từ M đén AB. Vẽ đường tròn (M; MH). Kẻ các tiếp tuyến AC, BD với đường tròn tâm M (C và D là các tiếp điểm khác H).
a. Chứng minh rằng ba điểm C, M, D thẳng hàng và CD là tiếp tuyến của đường tròn (O)
b. Chứng minh rằng khi điểm M di chuyển trên nửa đường tròn (O) thì tổng AC + BD không đổi
c. Giả sử CD và AB cắt nhau tại I. Chứng minh rằng tích OH.OI không đổi
Lời giải:
a. Trong đường tròn (M; MH), theo tính chất hai tiếp tuyến cắt nhau, ta có:
- MA là tia phân giác của góc HMC
Vậy C, M, D thẳng hàng.
b. Trong đường tròn (M; MH), theo tính chất hai tiếp tuyến cắt nhau, ta có:
AC = AH và BD = BH
Khi M thay đổi trên nửa đường tròn tâm O thì AC luôn bằng AH và BD luôn bằng BH
Suy ra: AC + BD = AH + BH = AB không đổi
c. Ta có: AC ⊥ CD và BD ⊥ CD (tính chất tiếp tuyến)
Suy ra: AC // BD hay tứ giác ABDC là hình thang
Mà OA = OB (bán kính (O))
Và AC = MD (bán kính (M))
Suy ra OM là đường trung bình của hình thang ABDC
Khi đó OM // AC. Suy ra: OM ⊥ CD hay góc (OMI) = 90o
Tam giác OMI vuông tại M có MH ⊥ OI
Theo hệ thức lượng trong tam giác vuông ta có: OM2 = OH.OI
Suy ra: OH.OI = R2 không đổi.
Các bài giải bài tập sách bài tập Toán 9 (SBT Toán 9)