08/05/2018, 16:57

Bài 54 trang 86 SBT Toán 8 Tập 1

Bài 5: Dựng hình bằng thước và compa. Dựng hình thang : Dựng hình thang cân ABCD có AB//CD, biết hai đáy AB = 2cm, CD = 4cm, đường cao AH = 2cm. Lời giải: Phân tích: Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán. Tam giác ADH dựng được vì biết hai ...

Bài 5: Dựng hình bằng thước và compa. Dựng hình thang

: Dựng hình thang cân ABCD có AB//CD, biết hai đáy AB = 2cm, CD = 4cm, đường cao AH = 2cm.

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Phân tích: Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán. Tam giác ADH dựng được vì biết hai cạnh góc vuông AH = 2cm và HD = lcm, ∠H = 90o và đáy AB < CD nên ∠D < 90o. Điểm H nằm giữa D và C.

Điểm C nằm trên tia đối tia HD và cách H

Điểm B thỏa mãn hai điều kiện:

- B nằm trên đường thẳng đi qua A và song song với DH.

- B cách A một khoảng bằng 2cm

Cách dựng:

- Dựng ΔAHD biết ∠H = 90o, AH = 2cm , HD = lcm

- Dựng tia đối tia HD

- Dựng điểm C sao cho HC = 3cm

- Dựng tia AX // DH, Ax nằm trên nửa mặt phẳng bờ AD chứa điểm H.

- Dựng điểm B sao cho AB = 2cm . Nối CB ta có hình thang ABCD cẩn dựng.

Chứng minh:

Tứ giác ABCD là hình thang vì AB//CD.

Kẻ BK ⊥ CD. Tứ giác ABKH là hình thang có 2 cạnh bên song song nên: BK = AH và KH = AB

Suy ra: KC = HC - KH = HC - AB = 3 - 2 = 1 (cm)

Suy ra: ΔAHD = ΔBKC (c.g.c) ⇒ ∠D = ∠C

Vậy hình thang ABCD là hình thang cân.

Hình thang cân ABCD có: AH = 2cm, đáy AB = 2cm, đáy CD = 4cm thỏa mãn điều kiện bài toán.

Biện luận: Tam giác AHD luôn dựng được nên hình thang ABCD luôn dựng được. Ta luôn được một hình thang thỏa mãn điều kiện bài toán.

Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8)

0