Bài 4.2 trang 85 SBT Toán 8 Tập 1
Bài 4: Đường trung bình của tam giác, của hình thang : Cho đường thẳng d và hai điểm A, B có khoảng cách đến đường thẳng d theo thứ tự là 20cm và 6cm. Gọi C là trung điểm của AB. Tính khoảng cách từ C đến đường thẳng d. Lời giải: a) Trường hợp A và B nằm trên một ...
Bài 4: Đường trung bình của tam giác, của hình thang
: Cho đường thẳng d và hai điểm A, B có khoảng cách đến đường thẳng d theo thứ tự là 20cm và 6cm. Gọi C là trung điểm của AB. Tính khoảng cách từ C đến đường thẳng d.
Lời giải:
a) Trường hợp A và B nằm trên một nửa mặt phẳng bờ chứa đường thẳng d.
Gọi A', B' là chân đường vuông góc kẻ từ A và B đến d
AA' ⊥ d; BB' ⊥ d ⇒ AA' // BB'
Tứ giác ABB'A' là hình thang. Kẻ CH ⊥ d
⇒ CH // AA' // BB' nên CG là đường trung bình của hình thang ABB'A'
⇒CH = (AA'+BB')/2 = (20 + 6)/2 = 13 (cm)
b) Trường hợp A và B nằm trên hai nửa mặt phẳng đối bờ chứa đường thẳng d
Kẻ CH ⊥ d cắt A'B tại K
⇒ CH // AA' // BB'
Trong ΔAA'B ta có: AC = CB
Mà CK // AA' nên A'K = KB và CK là đường trung bình của tam giác AA'B
⇒CK= AA'/2 (tính chất đường trung bình của tam giác)
CK = 20/2 = 10(cm)
Trong ΔA'BB' có A'K = KB và KH // BB'
Nên KH là đường trung bình của ΔA'BB'
⇒ KH = BB'/2 (tính chất đường trung bình của tam giác)
⇒ KH = 6/2 =3 (cm)
CH = CK – KH = 10 – 3 = 7(cm)
Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8)