Bài 36 trang 84 SBT Toán 8 Tập 1
Bài 4: Đường trung bình của tam giác, của hình thang : Cho tứ giác ABCD. Gọi E, F, I theo thứ tự là trung đếm của AD, BC, AC. Chứng minh rằng: a. EI//CD, IF//AB b. Lời giải: a. * Trong tam giác ADC, ta có: E là trung điểm của AD (gt) I là trung ...
Bài 4: Đường trung bình của tam giác, của hình thang
: Cho tứ giác ABCD. Gọi E, F, I theo thứ tự là trung đếm của AD, BC, AC. Chứng minh rằng:
a. EI//CD, IF//AB
b.
Lời giải:
a. * Trong tam giác ADC, ta có:
E là trung điểm của AD (gt)
I là trung điểm của AC (gt)
Nên EI là đường trung bình của ΔADC
⇒EI // CD (tỉnh chất đường trung bình của tam giác) và EI = CD / 2
* Trong tam giác ABC, ta có:
I là trung điểm của AC
F là trung điểm của BC
Nên IF là đường trung bình của ΔABC
⇒IF // AB (tỉnh chất đường trung bình của tam giác) và IF= AB / 2
b. Trong ΔEIF ta có: EF ≤ EI + IF (dấu “ = ” xảy ra khi E, I, F thẳng hàng) mà EI = CD / 2 ; IF= AB / 2 (chứng minh trên) ⇒
Vậy (dấu bằng xảy ra khi AB // CD)
Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8)