Bài 51 trang 61 SGK giải tích 12 nâng cao, a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số: b) Chứng minh rằng giao điểm I của đường...
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số: b) Chứng minh rằng giao điểm I của đường tiệm cận của đồ thị là tâm đối xứng của đồ thị. c) Tùy theo các giá trị của m, hãy biện luận số nghiệm của phương trình: . Bài 51 trang 61 SGK giải tích 12 nâng cao – Bài 7. Khảo sát sự biến thiên và vẽ ...
b) Chứng minh rằng giao điểm I của đường tiệm cận của đồ thị là tâm đối xứng của đồ thị.
c) Tùy theo các giá trị của m, hãy biện luận số nghiệm của phương trình: . Bài 51 trang 61 SGK giải tích 12 nâng cao – Bài 7. Khảo sát sự biến thiên và vẽ đồ thị hàm số của một số hàm phân thức hữu tỉ
Bài 51
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số: (y = {{2{x^2} + 5x + 4} over {x + 2}})
b) Chứng minh rằng giao điểm (I) của đường tiệm cận của đồ thị là tâm đối xứng của đồ thị.
c) Tùy theo các giá trị của (m), hãy biện luận số nghiệm của phương trình:
({{2{x^2} + 5x + 4} over {x + 2}} + m = 0)
Giải
a) TXĐ: (D =mathbb Rackslash left{ { – 2}
ight})
(mathop {lim }limits_{x o – {2^ + }} y = + infty ;,,mathop {lim }limits_{x o – {2^ – }} y = – infty ) nên (x = -2) là tiệm cận đứng.
Ta có: (y = 2x + 1 + {2 over {x + 2}})
(mathop {lim }limits_{x o pm infty } left[ {y – left( {2x + 1} ight)} ight] = mathop {lim }limits_{x o pm infty } {2 over {x + 2}} = 0) nên (y = 2x + 1) là tiệm cận xiên
(eqalign{
& y’ = 2 – {2 over {{{left( {x + 2}
ight)}^2}}} = {{2left[ {{{left( {x + 2}
ight)}^2} – 1}
ight]} over {{{left( {x + 2}
ight)}^2}}} = {{2left( {x + 1}
ight)left( {x + 3}
ight)} over {{{left( {x + 2}
ight)}^2}}} cr
& y’ = 0 Leftrightarrow left[ matrix{
x = – 1;,,yleft( { – 1}
ight) = 1 hfill cr
x = – 3;,,yleft( { – 3}
ight) = – 7 hfill cr}
ight. cr} )
Bảng biến thiên:
Điểm đặc biệt: (x = 0 Rightarrow y = 2)
b) Giao điểm hai đường tiệm cận của đồ thị là nghiệm của hệ.
(left{ matrix{
x = – 2 hfill cr
y = 2x + 1 hfill cr}
ight. Leftrightarrow left{ matrix{
x = – 2 hfill cr
y = – 3 hfill cr}
ight.)
Vậy (Ileft( { – 2; – 3}
ight))
Công thức đổi trục tịnh tiến theo véc tơ (overrightarrow {OI} ) là
(left{ matrix{
x = X – 2 hfill cr
y = Y – 3 hfill cr}
ight.)
Ta có:
(eqalign{
& Y – 3 = 2(X – 2) + 1 + {2 over {X – 2 + 2}} cr
& Leftrightarrow Y – 3 = 2X – 4 + 1 + {2 over X} cr
& Leftrightarrow Y = 2X + {2 over X} cr} )
Hàm số là hàm số lẻ nên đồ thị của hàm số nhận gốc (I) làm tâm đối xứng.
c) Ta có: ({{2{x^2} + 5x + 4} over {x + 2}} + m = 0 Leftrightarrow {{2{x^2} + 5x + 4} over {x + 2}} = – m)
Số nghiệm của phương trình chính là số giao điểm của đồ thị ((C)) hàm số và đường thẳng (y = -m).
Dựa vào đồ thị ta có:
+) (- m< -7) hoặc (–m>1) ( Leftrightarrow m > 7) hoặc (m< -1) : phương trình có (2) nghiệm;
+) (-m=-7) hoặc (–m = 1 Leftrightarrow m = 7) hoặc (m = -1): phương trình có (1) nghiệm;
+) (- 7<m< 1 Leftrightarrow -1 < m < 7): phương trình vô nghiệm.