27/04/2018, 18:21

Bài 24 trang 58 Sách bài tập Hình học lớp 12 Nâng cao

Cho hình trụ có bán kính bằng R, ...

Cho hình trụ có bán kính bằng R,

Cho hình trụ có bán kính bằng R, trục OO’ bằng h. Một mặt phẳng (P) thay đổi đi qua O, tạo với đáy hình trụ góc (alpha ) cho trước và cắt hai đáy của hình trụ đã cho theo các dây ABCD ( dây AB đi qua O).

1) Tính diện tích tứ giác ABCD.

2) Chứng minh rằng hình chiếu vuông góc H của điểm O’ trên (P) thuộc một đường tròn cố định.

Giải

1) Gọi I là trung điểm của CD thì (O'I ot CD), từ đó (OI ot CD). Vậy (alpha  = widehat {{ m{OIO'}}}).

Dễ thấy (AB//CD), tức là ABCD là hình thang. Mặt khác (OI ot CD) nên (OI ot AB.) Vậy ABCD là hình thang cân.

Diện tích S của ABCD được tính bởi

(S = {1 over 2}(AB + CD).OI)

Ta có : (AB = 2R,OI = {{OO'} over {sin alpha }} = {h over {sin alpha }}.)

(eqalign{  & O'I = OO'cot alpha  cr&Rightarrow ID = sqrt {O'{D^2} - O'{I^2}}  = sqrt {{R^2} - {h^2}{{cot }^2}alpha }   cr  &  Rightarrow CD = 2sqrt {{R^2} - {h^2}{{cot }^2}alpha }  cr} ).

Vậy (S = {1 over 2}(2R + 2sqrt {{R^2} - {h^2}{{cot }^2}alpha } ).{h over {sin alpha }})

            (= (R + sqrt {{R^2} - {h^2}{{cot }^2}alpha } ).{h over {sin alpha }}.)

2) Trong mặt phẳng (OO’I), kẻ (O'H ot OI) thì H là hình chiếu của O’ trên mp(P).

Xét tam giác vuông O’IH, ta có (O'H = O'Isin alpha  = h.cot alpha .sin alpha  = h.c{ m{os}}alpha { m{.}})

Kẻ đường cao HJ của tam giác vuông O’HO thì (O'J.OO' = O'{H^2},) 

( Rightarrow O'J = {{O'{H^2}} over {OO'}} = h.{cos ^2}alpha ,) từ đó suy ra J là điểm cố định.

Mặt khác (H{J^2} = O'{H^2} - O'{J^2} )

                          (= {h^2}.{cos ^2}alpha  - {h^2}.{cos ^4}alpha )

                          (= {h^2}{cos ^2}alpha .{sin ^2}alpha .)

Vậy HJ có độ dài không đổi, từ đó ta có điểm H thuộc đường tròn tâm J, bán kính cho trước, trong mặt phẳng vuông góc với OO’ tại J.

Chú ý. Cũng có thể thấy H thuộc mặt trụ T có trục là OO’, bán kính đáy R’ cho trước, cụ thể (R' = h.cos alpha .sin alpha ), đồng thời H thuộc mặt phẳng vuông góc với trục OO’ tại điểm J. Từ đó H thuộc đường tròn là giao của mặt trụ T và mặt phẳng nói trên.

Sachbaitap.com

0