Bài 24 trang 119 Sách bài tập Hình học lớp 12 Nâng cao
Chứng minh các tính chất sau đây có tích có hướng : ...
Chứng minh các tính chất sau đây có tích có hướng :
Chứng minh các tính chất sau đây có tích có hướng :
(eqalign{ & a)left[ {overrightarrow a ,overrightarrow b } ight] = - left[ { overrightarrow b ,overrightarrow a } ight]; cr & b)left[ {overrightarrow a ,overrightarrow a } ight] = overrightarrow 0 ; cr & c)left[ {koverrightarrow a ,overrightarrow b } ight] = kleft[ {overrightarrow a ,overrightarrow b } ight] = left[ {overrightarrow a ,koverrightarrow b } ight]; cr & d)left[ {overrightarrow c ,overrightarrow a + overrightarrow b } ight] = left[ {overrightarrow c ,overrightarrow a } ight] + left[ {overrightarrow c ,overrightarrow b } ight]; cr & cr} )
(eqalign{ & e)overrightarrow a left[ {overrightarrow b ,overrightarrow c } ight] = left[ {overrightarrow a ,overrightarrow b } ight].overrightarrow c ; cr & g)left| {{{left[ {overrightarrow a ,overrightarrow b } ight]}^2}} ight| = {left| {overrightarrow a } ight|^2}.{left| {overrightarrow b } ight|^2} - {(overrightarrow a .overrightarrow b )^2}. cr} )
Giải
Giả sử (overrightarrow a = ({x_1};{y_1};{z_1}),overrightarrow b = ({x_2};{y_2};{z_2}),overrightarrow c = ({x_3};{y_3};{z_3}))
(eqalign{ & a)left[ {overrightarrow a ,overrightarrow b } ight] = left( {left| matrix{ {y_1} hfill cr {y_2} hfill cr} ight.left. matrix{ {z_1} hfill cr {z_2} hfill cr} ight|;left| matrix{ {z_1} hfill cr {z_2} hfill cr} ight.left. matrix{ {x_1} hfill cr {x_2} hfill cr} ight|;left| matrix{ {x_1} hfill cr {x_2} hfill cr} ight.left. matrix{ {y_1} hfill cr {y_2} hfill cr} ight|} ight) cr & = ({y_1}{z_2} - {y_2}{z_1};{z_1}{x_2} - {z_2}{x_1};{x_1}{y_2} - {x_2}{y_1}) cr & = - ({y_2}{z_1} - {y_1}{z_2};{z_2}{x_1} - {z_1}{x_2};{x_2}{y_1} - {x_1}{y_2}) cr & = - left( {left| matrix{ {y_2} hfill cr {y_1} hfill cr} ight.left. matrix{ {z_2} hfill cr {z_1} hfill cr} ight|;left| matrix{ {z_2} hfill cr {z_1} hfill cr} ight.left. matrix{ {x_2} hfill cr {x_1} hfill cr} ight|;left| matrix{ {x_2} hfill cr {x_1} hfill cr} ight.left. matrix{ {y_2} hfill cr {y_1} hfill cr} ight|} ight) cr & = - left[ {overrightarrow b ,overrightarrow a } ight]. cr} )
b) Từ câu a) ta có (left[ {overrightarrow a ,overrightarrow a } ight] = - left[ {overrightarrow a ,overrightarrow a } ight]) , suy ra (left[ {overrightarrow a ,overrightarrow a } ight] = overrightarrow 0 ).
c) (eqalign{ & kleft[ {overrightarrow a ,overrightarrow b } ight] = left( {kleft| matrix{ {y_1} hfill cr {y_2} hfill cr} ight.left. matrix{ {z_1} hfill cr {z_2} hfill cr} ight|;kleft| matrix{ {z_1} hfill cr {z_2} hfill cr} ight.left. matrix{ {x_1} hfill cr {x_2} hfill cr} ight|;kleft| matrix{ {x_1} hfill cr {x_2} hfill cr} ight.left. matrix{ {y_1} hfill cr {y_2} hfill cr} ight|} ight) cr & = left( {left| matrix{ k{y_1} hfill cr {y_2} hfill cr} ight.left. matrix{ k{z_1} hfill cr {z_2} hfill cr} ight|;left| matrix{ k{z_1} hfill cr {z_2} hfill cr} ight.left. matrix{ k{x_1} hfill cr {x_2} hfill cr} ight|;left| matrix{ k{x_1} hfill cr {x_2} hfill cr} ight.left. matrix{ k{y_1} hfill cr {y_2} hfill cr} ight|} ight) cr & = left[ {koverrightarrow a ,overrightarrow b } ight]. cr} )
Tương tự (kleft[ {overrightarrow a ,overrightarrow b } ight] = left[ {overrightarrow a ,koverrightarrow b } ight].)
d)
e)
(eqalign{ & overrightarrow a .left[ {overrightarrow b ,overrightarrow c } ight] cr&= {x_1}left( {left| matrix{ {y_2} hfill cr {y_3} hfill cr} ight.left. matrix{ {z_2} hfill cr {z_3} hfill cr} ight| + {y_1}left| matrix{ {z_2} hfill cr {z_3} hfill cr} ight.left. matrix{ {x_2} hfill cr {x_3} hfill cr} ight| + {z_1}left| matrix{ {x_2} hfill cr {x_3} hfill cr} ight.left. matrix{ {y_2} hfill cr {y_3} hfill cr} ight|} ight) cr & = {x_3}left( {left| matrix{ {y_1} hfill cr {y_2} hfill cr} ight.left. matrix{ {z_1} hfill cr {z_2} hfill cr} ight| + {y_3}left| matrix{ {z_1} hfill cr {z_2} hfill cr} ight.left. matrix{ {x_1} hfill cr {x_2} hfill cr} ight| + {z_3}left| matrix{ {x_1} hfill cr {x_2} hfill cr} ight.left. matrix{ {y_1} hfill cr {y_2} hfill cr} ight|} ight) cr & =left[ {overrightarrow a ,overrightarrow b } ight].overrightarrow c cr} )
g)
(eqalign{ VP &= {left| {overrightarrow a } ight|^2}.{left| {overrightarrow b } ight|^2} - {(overrightarrow a .overrightarrow b )^2} cr&= {left| {overrightarrow a } ight|^2}.{left| {overrightarrow b } ight|^2} - {left| {overrightarrow a } ight|^2}.{left| {overrightarrow b } ight|^2}cos^2 alpha cr & = {left| {overrightarrow a } ight|^2}.{left| {overrightarrow b } ight|^2}(1 - {cos ^2}alpha ) = {left| {overrightarrow a } ight|^2}.{left| {overrightarrow a } ight|^2}.{sin ^2}alpha cr} )
( = {left| {left[ {overrightarrow a ,overrightarrow b } ight]} ight|^2} = VT) ( ở đây (alpha = (overrightarrow a ,overrightarrow b ))).
Sachbaitap.com