Bài 20 trang 217 Sách bài tập (SBT) Toán Đại số 10
Chứng minh rằng ...
Chứng minh rằng
Chứng minh rằng
a) ({{sqrt {1 + cos alpha } + sqrt {1 - cos alpha } } over {sqrt {1 + cos alpha } - sqrt {1 - cos alpha } }} = cot ({alpha over 2} + {pi over 4})) ((pi < alpha < 2pi ))
b) ({{cos 4a an 2a - sin 4a} over {cos 4acot 2a + sin 4a}} = - { an ^2}2a)
c) ({{{{sin }^2}2a + 4{{sin }^2}a - 4} over {1 - 8{{sin }^2}a - cos 4a}} = {1 over 2}{cot ^4}a)
d) (1 + 2cos 7a = {{sin 10,5a} over {sin 3,5a}})
e) ({{ an 3a} over { an a}} = {{3 - {{ an }^2}a} over {1 - 3{{ an }^2}a}})
Gợi ý làm bài
a) Vì (sqrt {1 + cos alpha } = - sqrt 2 cos {alpha over 2}(do{pi over 2} < {alpha over 2} < pi ))
(sqrt {1 - cos alpha } = sqrt 2 sin {alpha over 2}) cho nên
({{sqrt {1 + cos alpha } + sqrt {1 - cos alpha } } over {sqrt {1 + cos alpha } - sqrt {1 - cos alpha } }} = {{ - sqrt 2 cos {alpha over 2} + sqrt 2 cos {alpha over 2}} over { - sqrt 2 cos {alpha over 2} - sqrt 2 cos {alpha over 2}}})
( = {{cos {alpha over 2} - sin {alpha over 2}} over {cos {alpha over 2} + sin {alpha over 2}}} = {{1 - an {alpha over 2}} over {1 + an {alpha over 2}}} = an ({pi over 4} - {alpha over 2}))
( = cot ({alpha over 2} + {pi over 4}))
b)
(eqalign{
& = {{cos 4a an 2a - sin 4a} over {cos 4acot 2a + sin 4a}} cr
& = {{cos 4asin 2a - sin 4acos 2a} over {cos 4acos 2a + sin 4asin 2a}}. an 2a cr} )
( = {{ - sin 2a} over {cos 2a}} an 2a = - { an ^2}2a$)
c)
(eqalign{
& {{{{sin }^2}2a + 4{{sin }^2}4a} over {1 - {{sin }^2}a - cos 4a}} cr
& = {{4{{sin }^2}a{{cos }^2}a + 4({{sin }^2}a - 1)} over {1 - 8{{sin }^2}a - (1 - 2{{sin }^2}2a)}} cr} )
({{4{{cos }^2}a({{sin }^2}a - 1)} over {8{{sin }^2}a(co{s^2}a - 1)}} = {1 over 2}{cot ^4}a.)
d)
(eqalign{
& {{sin 10,5a} over {sin 3,5a}} = {{sin (7 + 3,5a)} over {sin 3,5a}} cr
& = {{sin 7acos 3,5a + cos 7asin 3,5a} over {sin 3,5a}} cr} )
( = {{sin 3,5a(2{{cos }^2}3,5a + cos 7a)} over {sin 3,5a}})
( = (2{cos ^2}3,5a - 1) + 1 + cos7a)
( = 2cos7a + 1.)
e)
(eqalign{
& {{ an (a + 2a)} over { an a}} = {{ an a + an 2a} over { an a(1 - {mathop{
m tanatan}
olimits} 2a}} cr
& = {{ an a + {{2 an a} over {1 - {{ an }^2}a}}} over { an a(1 - {{2{{ an }^2}a} over {1 - {{ an }^2}a}})}} cr} )
( = {{3 - {{ an }^2}a} over {1 - 3{{ an }^2}a}}$)
Sachbaitap.net