11/01/2018, 13:46

Bài 11 trang 72 sgk Toán lớp 9 tập 2

Bài 11 trang 72 sgk Toán lớp 9 tập 2 Bài 11. Cho hai đường tròn bằng nhau (O) và (O') cắt nhau tại hai điểm A và B ...

Bài 11 trang 72 sgk Toán lớp 9 tập 2

Bài 11. Cho hai đường tròn bằng nhau (O) và (O') cắt nhau tại hai điểm A và B

Bài 11. Cho hai đường tròn bằng nhau ((O)) và ((O')) cắt nhau tại hai điểm (A) và (B). Kẻ các đường kính (AOC, AO'D). Gọi (E) là giao điểm thứ hai của (AC) với đường tròn ((O')).

a) So sánh các cung nhỏ (overparen{BC}, overparen{BD}).

b) Chứng minh rằng (B) là điểm chính giữa của cung (overparen{EBD}) ( tức điểm (B) chia cung (overparen{EBD}) thành hai cung bằng nhau: (overparen{BE}) =  (overparen{BD}) ).

Hướng dẫn giải:

a) Nối (C) đến (D).

Ta có 2 đường tròn bằng nhau (=> AC = AD)

(=> ∆ ACD) cân tại (A)

Lại có (widehat{ABC} = 90^0); do có (OB = OC = OA = R) ( tính chất trung tuyến ứng với cạnh huyền )

Tương tự có (widehat{ABD} = 90^0)

(=> widehat{ABC} + widehat{ABD} = 180^0)

(=> C; B; D) thẳng hàng và (AB ot CD)

(=> BC = BD)

=> (overparen{BC}) = (overparen{BD})

b) Nối (E) đến (D); từ (B) hạ (BH ot ED) Ta có góc (widehat{DEA} = 90^0) ( chứng minh tương tự theo (a) )

(=> BH // EC)

Mà theo (a) ta có (BE = BD)

(=> BH) là đường trung bình tam giác (CDE)

(=> HE = HD) mà (BH ot ED => B) là điểm chính giữa  (overparen{EBD})

soanbailop6.com

0