Sự phân giải glucose thành pyruvate
Vi sinh vật sử dụng một số con đường trao đổi chất để chuyển hoá glucose và các đường khác. Do tính đa dạng về trao đổi chất như vậy mà trao đổi chất của chúng thường rắc rối. Để tránh những rắc rối có thể xảy ra các con đường vi sinh vật phân ...
Vi sinh vật sử dụng một số con đường trao đổi chất để chuyển hoá glucose và các đường khác. Do tính đa dạng về trao đổi chất như vậy mà trao đổi chất của chúng thường rắc rối. Để tránh những rắc rối có thể xảy ra các con đường vi sinh vật phân giải đường thành Pyruvate và các chất trung gian tương tự sẽ được tập trung vào ba con đường: đường phân, con đường pentose-phosphate và con đường Entner - Doudoroff. Tiếp theo đó, các con đường phân giải Pyruvate hiếu khí và kỵ khí sẽ được đề cập. Để đơn giản, cấu trúc hoá học của các chất trung gian trong trao đổi chất sẽ không được dùng trong sơ đồ của con đường.
17.2.1. Con đường đường phân (con đường Embden-Meyerhof)
Đây là con đường phổ biến nhất dùng phân giải glucose thành pyruvate trong giai đoạn hai của dị hoá. Đường phân gặp ở tất cả các nhóm chủ yếu của vi sinh vật và hoạt động trong sự có mặt cũng như vắng mặt của oxy. Quá trình này diễn ra trong phần nền tế bào chất của cơ thể nhận nguyên thuỷ và nhân thật Đường phân có thể được chia thành hai phần (Hình 17.5). Trong chặng mở đầu 6- carbon glucose được phosphoryl hoá hai lần, cuối cùng được chuyển thành fructo-1,6- bisphosphate. Các đường khác thường nhập vào con đường đường phân thông qua việc chuyển hoá thành gluco-6-phosphate hoặc fructo-6-phosphate. Chặng mở đầu này không sinh năng lượng, trái lại phải tiêu thụ hai phân tử ATP cho một phân tử glucose. Tuy nhiên, nhờ việc gắn phosphate vào mỗi đầu của đường mà các phosphate này sẽ được dùng để tạo thành ATP.
Chặng 3-carbon của đường phân bắt đầu khi enzyme fructo-1,6-bisphosphate aldolase xúc tác phân giải fructo-1,6-bisphosphate thành hai nửa, mỗi nửa đều chứa nhóm phosphate. Một trong các sản phNm là glyceraldehyde-3-phosphate được chuyển trực tiếp thành Pyruvate trong quá trình gồm 5 bước. Sản phNm thứ hai là dihydroxyacetonephosphate có thể dễ dàng chuyển thành glyceraldehyde-3-phosphate, do đó cả hai nửacủa fructo-1,6-bisphosphate đều được sử dụng trong chặng 3-carbon. Trước hết, glyceraldehyde-3-phosphate bị oxy hoá nhờ N AD+ là chất nhận electron, đồng thời một nhóm phosphate được gắn vào để tạo thành 1,3-bisphosphate glycerate là một phân tử cao năng. Sau đó phosphate cao năng ở carbon 1 được chuyển cho ADP và xuất hiện
ATP. Việc tổng hợp ATP nói trên được gọi là phosphoryl hoá ở mức độ cơ chất vì quá trình phosphoryl hoá ADP liên kết với sự phân giải ngoại năng của một phân tử cơ chất
cao năng. Một quá trình tương tự tạo thành một phân tử ATP thứ hai cũng nhờ phosphoryl hoá ở mức độ cơ chất. N hóm phosphate trên 3-phosphorusglycerate được chuyển sang carbon 2 và 2-phosphorusglycerate bị loại nước để tạo thành một phân tử cao năng thứ hai là phosphorusenol pyruvate. Phân tử này chuyển nhóm phosphate sang ADP tạo thành một ATP thứ hai và pyruvate là sản phNm cuối cùng của con đường.
Con đường đường phân
Trong hình là con đường đường phân phân giải glucose thành Pyruvate. 2 giai đoạn của
con đường và các sản phẩm được trình bày ở đây. (Theo: Prescott và cs, 2005)
Con đường đường phân phân giải một glucose thành 2 pyruvate qua chuỗi phản ứng mô tả như trên. ATP và N ADH cũng được tạo thành. Sản lượng của ATP và N ADH có thể tính được khi xem xét hai chặng riêng rẽ. Trong chặng 6-carbon hai ATP được dùng để tạo thành fructo-1,6-bisphosphate. Vì 2 glyceraldehyde-3-phosphate xuất hiện từ một glucose (1 từ dihydroxyacetone-phosphate) chặng 3-carbon tạo thành 4 ATP và 2 N ADH từ 1 glucose. N ếu trừ ATP dùng trong chặng 6-carbon ta sẽ được sản lượng thực là 2 ATP/glucose. Do đó sự phân giải glucose thành pyruvate trong đường phân có thể được biểu thị trong phương trình đơn giản sau:
Glucose + 2ADP + 2Pi + 2N AD+ → 2 Pyruvate + 2ATP + 2N ADH + 2H+
17.2.2. Con đường pentose-phosphate (con đường hexo-monophosphate)
Con đường này có thể được dùng đồng thời với con đường đường phân và con đường Entner - Doudoroff, diễn ra trong điều kiện hiếu khí cũng như kỵ khí và có vai trò quan trọng trong sinh tổng hợp cũng như trong phân giải. Con đường pentose-phosphate bắt đầu với việc oxy hoá gluco-6-phosphate thành 6-phosphorus-gluconat, tiếp theo là oxy hoá 6-phosphorusgluconat thành ribulo-5- phosphate và CO2 (Hình 17.6). N ADPH được tạo thành trong các phản ứng oxy hoá nói trên. Sau đó ribulo-5- phosphate được chuyển thành một hỗn hợp gồm các đường phosphate 3 đến 7-carbon. Hai enzyme đặc trưng của con đường đóng vai trò trung tâm trong những sự chuyển hoá này là: 1) Transketolase xúc tác chuyển nhóm ketol 2 carbon và 2) Transaldolase xúc tác chuyển nhóm 3-carbon từ sedoheptulo - 7 - phosphate với glyceraldehyde-3-phosphate (Hình 17.7). Kết quả chung là 3 gluco-6-phosphate được chuyển thành 2 fructo-6- phosphate, glyceraldehyde-3-phosphate và 3 phân tử CO2 theo phương trình sau:
3 gluco-6-phosphate + 6N ADP+ + 3H2O → 2 fructo-6-phosphate + glyceraldehyde-3-phosphate + 3CO2 + 6 N ADPH + 6H+
Các chất trung gian nói trên được sử dụng trong hai con đường. Fructo-6- phosphate có thể được chuyển trở lại thành gluco-6-phosphate, còn glyceraldehyde-3- phosphate được chuyển thành Pyruvate bởi các enzyme của đường phân. Glyceraldehyde-3-phosphate cũng có thể trở lại con đường pentose-phosphate qua việc tạo thành gluco-6-phosphate. Điều này dẫn đến sự phân giải hoàn toàn gluco-6-phosphate thành CO2 và tạo thành một lượng lớn N ADPH:
Gluco-6-phosphate + 12N ADP+ + 7H2O → 6 CO2 + 12N ADPH + 12H+ + Pi
Con đường pentose-phosphate có một số chức năng dị hoá và đồng hoá, chẳng
hạn:
1. N ADPH từ con đường pentose-phosphate được dùng làm nguồn electron cho việc khử các phân tử trong sinh tổng hợp.
2. Con đường tổng hợp các đường 4-carbon và 5-carbon dùng vào một số mục đích. Đường 4-carbon erytro-4-phosphate được dùng để tổng hợp các acid amin thơm và vitamin B6 (piridoxal). Ribo-5-phosphate là thành phần chủ yếu của các acid nucleic và
ribulo-1,5-diphosphate là chất nhận CO2 đầu tiên trong quang hợp. Tuy nhiên, khi một vi sinh vật đang sinh trưởng trên một nguồn carbon là pentosese, con đường cũng có thể
cung cấp carbon cho việc tổng hợp hexose (glucose cần cho việc tổng hợp peptidoglican).
Ở đây, 3 phân tử gluco-6-phosphate được chuyển hóa thành 2 fructo-6-phosphate và
glyceraldehyde-3-phosphate. Fructo 6-phosphate được chuyển hóa trở lại thành gluco-6-
phosphate. Glyceraldehyde-3-phosphate có thể được chuyển thành Pyruvate hay k ế t hợp với 1
phân tử dihydroxyacetone-phosphate (từ glyceraldehyde-3-phosphate tạo thành ở vòng thứ 2 của
con đường) để sản ra fructo-6-phosphate. (Theo: Prescott và cs, 2005)
Transketolase và transaldolase
Trong hình là các phản ứng xúc tác bởi 2 enzyme này. (Theo: Prescott và cs, 2005)
3. Các chất trung gian trong con đường pentose-phosphate có thể được dùng để tạo thành ATP. Glyceraldehyde-3-phosphate từ con đường có thể đi vào chặng 3-carbon của con đường đường phân và được chuyển thành ATP và Pyruvate. Pyruvate có thể bị oxy hoá trong chu trình acid tricarboxylic để cung cấp nhiều năng lượng hơn. N goài ra, một phần N ADPH có thể được chuyển thành N ADH để sản ra ATP khi N ADH bị oxy hoá trong chuỗi vận chuyển electron. Vì các đường 5-carbon là những chất trung gian trong con đường do đó con đường pentose-phosphate có thể được dùng để chuyển hoá pentosese cũng như hexose. Mặc dù có thể là nguồn năng lượng đối với nhiều vi sinh vật nhưng con đường pentose-phosphate thường có vai trò quan trọng hơn trong sinh tổng hợp. Hơn nữa, tuy cả hai con đường đường phân và pentose-phosphate đều sử dụng gluco-6-P nhưng mức độ hoạt động của mỗi con đường tùy thuộc vào trạng thái sinh trưởng của tế bào. Trong giai đoạn sinh trưởng mạnh mẽ nhất 2 con đường được sử dụng với tỉ lệ 2:1 (EM: pentose-P). Tuy nhiên khi sinh trưởng chậm lại năng lực sinh tổng hợp cũng giảm theo, đồng thời N ADPH cũng như các phosphate đường C5 và C4 cần ít hơn khiến cho tỉ lệ giữa hai con đường bây giờ trở thành 10:1 thậm chí 20:1.
17.2.3. Con đường Entner-Doudoroff
Mặc dù đường phân là con đường phổ biến nhất dùng chuyển hoá các hexose thành pyruvate nhưng một con đường khác, tương tự cũng đã được phát hiện. Con đường Entner-Doudoroff mở đầu với các phản ứng chi như con đường pentose-phosphate tức là
tạo thành gluco-6-phosphate và 6-phosphorus-gluconat (Hình 17.8).
Con đường Entner-DoudoroffThứ tự từ glyceraldehyde-3-phosphate tới Pyruvate được xúc tác bởi các enzyme chung cho con đường đường phân. (Theo: Prescott và cs, 2005)
Tuy nhiên, sau đó 6-phosphorus-gluconat không bị oxy tiếp mà bị loại nước tạo thành 2-keto-3-deoxy-6-phosphorusgluconat (KDPG) là chất trung gian chủ yếu trong con đường này. KDPG sẽ bị phân giải bởi KDPG aldolase thành Pyruvate và glyceraldehyde-3-phosphate. Glyceraldehyde-3-phosphate được chuyển thành pyruvate ở phần cuối của con đường đường phân. Con đường Entner-Doudoroff phân giải glucose thành pyruvate, 1 ATP, 1 N ADH và 1 N ADPH. Hầu hết vi khuNn sử dụng các con đường đường phân và pentose-phosphate nhưng một số lại sử dụng con đường Entner-Doudoroff thay cho đường phân. Con đường Entner-Doudoroff thường gặp ở các chi Pseudomonas, Rhizobium, Azotobacter, Agrobacterium và một vài chi vi khuNn gram âm khác. Trong số các vi khuNn gram dương mới chỉ phát hiện Enterococcus faecalis sử dụng con đường nói trên. Do con đường Entner-Doudoroff không tạo thành các phosphate đường C5 và C4
nên tế bào vẫn cần sự hoạt động đồng thời của cả con đường pentose-P. Thử nghiệm đối với khả năng oxi hóa glucose bởi con đường Entner-Doudoroff đôi khi được sử dụng để xác định Pseudomonas trong phòng thí nghiệm lâm sàng.