HỌ TTL
Trong quá trình phát triển của công nghệ chế tạo mạch số ta có các họ: RTL (Resistor-transistor logic), DCTL (Direct couple-transistor logic), RCTL (Resistor-Capacitor-transistor logic), DTL (Diod-transistor logic), ECL (Emitter- couple ...
Trong quá trình phát triển của công nghệ chế tạo mạch số ta có các họ: RTL (Resistor-transistor logic), DCTL (Direct couple-transistor logic), RCTL (Resistor-Capacitor-transistor logic), DTL (Diod-transistor logic), ECL (Emitter- couple logic) v.v.... Đến bây giờ tồn tại hai họ có nhiều tính năng kỹ thuật cao như thời trễ truyền nhỏ, tiêu hao công suất ít, đó là họ TTL (transistor-transistor logic) dùng công nghệ chế tạo BJT và họ MOS (Công nghệ chế tạo MOS)
Dưới đây, lần lượt khảo sát các cổng logic của hai họ TTL và MOS
Cổng cơ bản họ TTL
Lấy cổng NAND 3 ngã vào làm thí dụ để thấy cấu tạo và vận hành của một cổng cơ bản
(H 3.21)
Khi một trong các ngã vào A, B, C xuống mức không T1 dẫn đưa đến T2 ngưng, T3 ngưng, ngã ra Y lên cao; khi cả 3 ngã vào lên cao, T1 ngưng, T2 dẫn, T3 dẫn, ngã ra Y xuống thấp. Đó chính là kết quả của cổng NAND.
Tụ CL trong mạch chính là tụ ký sinh tạo bởi sự kết hợp giữa ngã ra của mạch (tầng thúc) với ngã vào của tầng tải, khi mạch hoạt động tụ sẽ nạp điện qua R4 (lúc T3 ngưng) và phóng qua T3 khi transistor này dẫn do đó thời trễ truyền của mạch quyết định bởi R4 và CL, khi R4 nhỏ mạch hoạt động nhanh nhưng công suất tiêu thụ lúc đó lớn, muốn giảm công suất phải tăng R4 nhưng như vậy thời trễ truyền sẽ lớn hơn (mạch giao hoán chậm hơn). Để giải quyết khuyết điểm này đồng thời thỏa mãn một số yêu cầu khác , người ta đã chế tạo các cổng logic với các kiểu ngã ra khác nhau.
Các kiểu ngã ra
Ngã ra totempole
(H 3.22)
R4 trong mạch cơ bản được thay thế bởi cụm T4, RC và Diod D, trong đó RC có trị rất nhỏ, không đáng kể. T2 bây giờ giữ vai trò mạch đảo pha: khi T2 dẫn thì T3 dẫn và T4 ngưng, Y xuống thấp, khi T2 ngưng thì T3 ngưng và T4 dẫn, ngã ra Y lên cao. Tụ CL nạp điện qua T4 khi T4 dẫn và phóng qua T3 (dẫn), thời hằng mạch rất nhỏ và kết quả là thời trễ truyền nhỏ. Ngoài ra do T3 & T4 luân phiên ngưng tương ứng với 2 trạng thái của ngã ra nên công suất tiêu thụ giảm đáng kể. Diod D có tác dụng nâng điện thế cực B của T4 lên để bảo đảm khi T3 dẫn thì T4 ngưng.
Ngã ra cực thu để hở có một số lợi điểm sau:
Mạch này có khuyết điểm là không thể nối chung nhiều ngã ra của các cổng khác nhau vì có thể gây hư hỏng khi các trạng thái logic của các cổng này khác nhau.
{} Ngã ra cực thu để hở
(H 3.23)
- Cho phép kết nối các ngã ra của nhiều cổng khác nhau, nhưng khi sử dụng phải mắc một điện trở từ ngã ra lên nguồn Vcc, gọi là điện trở kéo lên, trị số của điện trở này có thể được chọn lớn hay nhỏ tùy theo yêu cầu có lợi về mặt công suất hay tốc độ làm việc.
Điểm nối chung của các ngã ra có tác dụng như một cổng AND nên ta gọi là điểm AND (H 3.24)
- Người ta cũng chế tạo các IC ngã ra có cực thu để hở cho phép điện trở kéo lên mắc vào nguồn điện thế cao, dùng cho các tải đặc biệt hoặc dùng tạo sự giao tiếp giữa họ TTL với CMOS dùng nguồn cao.
Thí dụ IC 7406 là loại cổng đảo có ngã ra cực thu để hở có thể mắc lên nguồn 24 V (H3.25)
Mạch (H 3.26) là một cổng đảo có ngã ra 3 trạng thái, trong đó T4 & T5 được mắc Darlington để cấp dòng ra lớn cho tải. Diod D nối vào ngã vào C để điều khiển. Hoạt động của mạch giải thích như sau:
- Khi C=1, Diod D ngưng dẫn, mạch hoạt động như một cổng đảo
- Khi C=0, Diod D dẫn, cực thu T2 bị ghim áp ở mức thấp nên T3, T4 & T5 đều ngưng, ngã ra mạch ở trạng thái tổng trở cao.
Ký hiệu của cổng đảo ngã ra 3 trạng thái, có ngã điều khiển C tác động mức cao và bảng sự thật cho ở (H 3.27)
Cũng có các cổng đảo và cổng đệm 3 trạng thái với ngã điều khiển C tác động mức thấp mà SV có thể tự vẽ ký hiệu và bảng sự thật.
(H 3.28) là một ứng dụng của cổng đệm có ngã ra 3 trạng thái: Mạch chọn dữ liệu
(H 3.28)