Giải bài tập SGK Toán lớp 9 bài 7: Vị trí tương đối của hai đường tròn
Giải bài tập Toán lớp 9 trang 117, 118, 119 SGK Giải bài tập SGK Toán lớp 9 bài 7: Vị trí tương đối của hai đường tròn Giải bài tập SGK Toán lớp 9 bài 7: Vị trí tương đối của hai đường tròn. Đây là tài liệu tham khảo ...
Giải bài tập SGK Toán lớp 9 bài 7: Vị trí tương đối của hai đường tròn
Giải bài tập SGK Toán lớp 9 bài 7: Vị trí tương đối của hai đường tròn. Đây là tài liệu tham khảo hay được VnDoc.com sưu tầm nhằm giúp quá trình ôn tập và củng cố kiến thức chuẩn bị cho kì thi học kì mới môn Toán của các bạn học sinh lớp 9 trở nên thuận lợi hơn. Mời các bạn tham khảo
Trả lời câu hỏi Toán 9 Tập 1 Bài 7 trang 117: Ta gọi hai đường tròn không trùng nhau là hai đường tròn phân biệt. Vì sao hai đường tròn phân biệt không thể có quá hai điểm chung?
Lời giải
Nếu hai đường tròn có nhiều hơn hai điểm chung thì khi đó hai đường tròn sẽ đi qua ít nhất ba điểm chung. Mà qua 3 điểm phân biệt thì chỉ xác định được duy nhất 1 đường tròn nên 2 đường tròn này không thể phân biệt
Trả lời câu hỏi Toán 9 Tập 1 Bài 7 trang 118:
a) Quan sát hình 85, chứng minh rằng OO’ là đường trung trực của AB.
b) Quan sát hình 86, hãy dự đoán về vị trí của điểm A đối với đường nối tâm OO’.
Lời giải
a) Ta có: OA = OB (= bán kính đường tròn (O))
O’A = O’B (= bán kính đường tròn (O’))
⇒ OO’ là đường trung trực của AB
b) Hình 86a) Hai đường tròn tiếp xúc ngoài thì A nằm giữa O và O’
Hình 86b) Hai đường tròn tiếp xúc trong thì A nằm ngoài đoạn OO’
Trả lời câu hỏi Toán 9 Tập 1 Bài 7 trang 119: Cho hình 88.
a) Hãy xác định vị trí tương đối của hai đường tròn (O) và (O’).
b) Chứng minh rằng BC // OO’ và ba điểm C, B, D thẳng hàng.
Lời giải
a) Hai đường tròn (O) và (O’) cắt nhau
b) Xét tam giác ABC có:
OA = OB = OC = bán kính đường tròn (O)
Mà BO là trung tuyến của tam giác ABC
⇒ ∆ABC vuông tại B ⇒ AB ⊥ BC (1)
Lại có OO’ là đường trung trực của AB
⇒ AB ⊥ OO' (2)
Từ (1) và (2) ⇒ OO’ // BC
Chứng minh tương tự ta có ∆ABD vuông tại B ⇒ AB ⊥ BD (3)
Từ (1) và (3) ⇒ B, C, D thẳng hàng.
Bài 33 (trang 119 SGK Toán 9 Tập 1): Trên hình 89, hai đường tròn tiếp xúc nhau tại A. Chứng minh rằng OC // O'D.
Hình 89
Lời giải:
Ta có: OA = OC (bán kính) nên ΔOAC cân tại O.
Lại có O'A = O'D (bán kính) nên ΔO'AD cân tại O'
Vậy OC // O'D (có hai góc so le trong bằng nhau).
Bài 34 (trang 119 SGK Toán 9 Tập 1): Cho hai đường tròn (O; 20cm) và (O'; 15cm) cắt nhau tại A và B. Tính đoạn nối tâm OO', biết rằng AB = 24 cm. (Xét hai trường hợp: O và O' nằm khác phía đối với AB; O và O' nằm cùng phía đối với AB).
Lời giải:
- Trường hợp 1: O và O' nằm khác phía đối với AB
Gọi I là giao điểm của OO' và AB. Theo tính chất đường nối tâm ta có:
AB ⊥ OO' và AI = IB = 12
Áp dụng định lí Pitago, ta được:
Vậy OO' = OI + IO' = 16 + 9 = 25 (cm)
- Trường hợp 2: O và O' nằm cùng phía đối với AB
Tương tự như trường hợp 1, ta có:
Vậy OO' = OI – O'I = 16 – 9 = 7 (cm).