27/04/2018, 09:10

Câu 84 trang 90 Sách bài tập (SBT) Toán 8 tập 1

Trên hình 11, cho ABCD là hình bình hành. Chứng minh rằng: ...

Trên hình 11, cho ABCD là hình bình hành. Chứng minh rằng:

                                                                       

Trên hình 11, cho ABCD là hình bình hành. Chứng minh rằng:

a. EGFH là hình bình hành

b. Các đường thẳng AC, BD, EF, GH đồng quy.

Giải:                                                                      

a. Xét ∆ AEH và ∆ CFG:

AE = CF

(widehat A = widehat C) (tính chất hình bình hành)

AH = CG (vì AD = BC và DH = BG)

Do đó: ∆ AEH = ∆ CFG (c.g.c)

⇒ EH = FG

Xét ∆ BEG và ∆DFH:

DH = BG (gt)

(widehat B = widehat D) (tính chất hình bình hành)

BE = DF (vì AB = CD và AE = CF)

Do đó: ∆ BEG = ∆DFH (c.g.c)

⇒ EG = FH

Suy ra: Tứ giác EGFH là hình bình hành (vì có cắc cặp cạnh đối bằng nhau)

b. Gọi O là giao điểm của AC và EF.

Xét tứ giác AECF:

AB // CD (gt) hay AE // CF

AE = CF (gt)

Suy ra: Tứ giác AECF là hình bình hành (vì có 1 cặp cạnh đối song song và bằng nhau)

⇒ O là trung điểm của AC và EF

Tứ giác ABCD là hình bình hành có O là trung điểm của AC nên O cũng là trung điểm của BD.

Tứ giác EGFH là hình bình hành có O là trung điểm của EF nên O cùng là trung điểm của GH.

Vậy AC, BD, GH đồng quy tại O.

Sachbaitap.com

0