Câu 58 trang 39 Sách bài tập (SBT) Toán 8 tập 1
Thực hiện các phép tính : ...
Thực hiện các phép tính :
Thực hiện các phép tính :
a. (left( {{9 over {{x^3} - 9x}} + {1 over {x + 3}}} ight):left( {{{x - 3} over {{x^2} + 3x}} - {x over {3x + 9}}} ight))
b. (left( {{2 over {x - 2}} - {2 over {x + 2}}} ight).{{{x^2} + 4x + 4} over 8})
c. (left( {{{3x} over {1 - 3x}} + {{2x} over {3x + 1}}} ight):{{6{x^2} + 10x} over {1 - 6x + 9{x^2}}})
d. (left( {{x over {{x^2} - 25}} - {{x - 5} over {{x^2} + 5x}}} ight):{{2x - 5} over {{x^2} + 5x}} + {x over {5 - x}})
e. (left( {{{{x^2} + xy} over {{x^3} + {x^2}y + x{y^2} + {y^3}}} + {y over {{x^2} + {y^2}}}} ight):left( {{1 over {x - y}} - {{2xy} over {{x^3} - {x^2}y + x{y^2} - {y^3}}}} ight))
Giải:
a. (left( {{9 over {{x^3} - 9x}} + {1 over {x + 3}}} ight):left( {{{x - 3} over {{x^2} + 3x}} - {x over {3x + 9}}} ight))
(eqalign{ & = left[ {{9 over {xleft( {x + 3} ight)left( {x - 3} ight)}} + {1 over {x + 3}}} ight]:left[ {{{x - 3} over {xleft( {x + 3} ight)}} - {x over {3left( {x + 3} ight)}}} ight] cr & = {{9 + xleft( {x - 3} ight)} over {xleft( {x + 3} ight)left( {x - 3} ight)}}:{{3left( {x - 3} ight) - {x^2}} over {3xleft( {x + 3} ight)}} = {{{x^2} - 3x + 9} over {xleft( {x + 3} ight)left( {x - 3} ight)}}.{{3xleft( {x + 3} ight)} over {3x - 9 - {x^2}}} cr & = {{3left( {{x^2} - 3x + 9} ight)} over {left( {3 - x} ight)left( {{x^2} - 3x + 9} ight)}} = {3 over {3 - x}} cr} )
b. (left( {{2 over {x - 2}} - {2 over {x + 2}}} ight).{{{x^2} + 4x + 4} over 8})( = {{2left( {x + 2} ight) - 2left( {x - 2} ight)} over {left( {x - 2} ight)left( {x + 2} ight)}}.{{{{left( {x + 2} ight)}^2}} over 8})
( = {{2x + 4 - 2x + 4} over {left( {x - 2} ight)left( {x + 2} ight)}}.{{{{left( {x + 2} ight)}^2}} over 8} = {8 over {left( {x - 2} ight)left( {x + 2} ight)}}.{{{{left( {x + 2} ight)}^2}} over 8} = {{x + 2} over {x - 2}})
c. (left( {{{3x} over {1 - 3x}} + {{2x} over {3x + 1}}} ight):{{6{x^2} + 10x} over {1 - 6x + 9{x^2}}})( = {{3xleft( {3x + 1} ight) + 2xleft( {1 - 3x} ight)} over {left( {1 - 3x} ight)left( {1 + 3x} ight)}}:{{2xleft( {3x + 5} ight)} over {{{left( {1 - 3x} ight)}^2}}})
(eqalign{ & = {{9{x^2} + 3x + 2x - 6{x^2}} over {left( {1 - 3x} ight)left( {1 + 3x} ight)}}.{{{{left( {1 - 3x} ight)}^2}} over {2xleft( {3x + 5} ight)}} = {{xleft( {3x + 5} ight)} over {left( {1 - 3x} ight)left( {1 + 3x} ight)}}.{{{{left( {1 - 3x} ight)}^2}} over {2xleft( {3x + 5} ight)}} cr & = {{1 - 3x} over {2left( {1 + 3x} ight)}} cr} )
d. (left( {{x over {{x^2} - 25}} - {{x - 5} over {{x^2} + 5x}}} ight):{{2x - 5} over {{x^2} + 5x}} + {x over {5 - x}})
(eqalign{ & = left[ {{x over {left( {x + 5} ight)left( {x - 5} ight)}} - {{x - 5} over {xleft( {x + 5} ight)}}} ight]:{{2x - 5} over {xleft( {x + 5} ight)}} + {x over {5 - x}} cr & = {{{x^2} - {{left( {x - 5} ight)}^2}} over {xleft( {x + 5} ight)left( {x - 5} ight)}}.{{xleft( {x + 5} ight)} over {2x - 5}} + {x over {5 - x}} cr & = {{{x^2} - {x^2} + 10x - 25} over {left( {x - 5} ight)left( {2x - 5} ight)}} + {x over {5 - x}} = {{5left( {2x - 5} ight)} over {left( {x - 5} ight)left( {2x - 5} ight)}} - {x over {x - 5}} cr & = {5 over {x - 5}} - {x over {x - 5}} = {{5 - x} over {x - 5}} = {{ - left( {x - 5} ight)} over {x - 5}} = - 1 cr} )
e. (left( {{{{x^2} + xy} over {{x^3} + {x^2}y + x{y^2} + {y^3}}} + {y over {{x^2} + {y^2}}}} ight):left( {{1 over {x - y}} - {{2xy} over {{x^3} - {x^2}y + x{y^2} - {y^3}}}} ight))
(eqalign{ & = left[ {{{{x^2} + xy} over {left( {{x^2} + {y^2}} ight)left( {x + y} ight)}} + {y over {{x^2} + {y^2}}}} ight]:left[ {{1 over {x - y}} - {{2xy} over {left( {{x^2} + {y^2}} ight)left( {x - y} ight)}}} ight] cr & = {{{x^2} + xy + yleft( {x + y} ight)} over {left( {{x^2} + {y^2}} ight)left( {x + y} ight)}}:{{{x^2} + {y^2} - 2xy} over {left( {{x^2} + {y^2}} ight)left( {x - y} ight)}} cr & = {{{x^2} + xy + xy + {y^2}} over {left( {{x^2} + {y^2}} ight)left( {x + y} ight)}}.{{left( {{x^2} + {y^2}} ight)left( {x - y} ight)} over {{{left( {x - y} ight)}^2}}} cr & = {{{{left( {x + y} ight)}^2}} over {left( {{x^2} + {y^2}} ight)left( {x + y} ight)}}.{{left( {{x^2} + {y^2}} ight)left( {x - y} ight)} over {{{left( {x - y} ight)}^2}}} = {{x + y} over {x - y}} cr} )