12/05/2018, 23:24

Bài 8: Thiết diện của khối đa diện

Thiết diện và phương pháp tìm thiết diện Thiết diện: là một đa giác được tạo bởi giao điểm của mặt phẳng (P) với tất cả các cạnh ( đoạn thẳng ) của hình chóp và mặt phẳng (P). Phương pháp tìm thiết diện: Phương pháp 1: Tìm giao điểm của mặt phẳng với các đoạn thẳng cạnh bên, cạnh đáy ...

Thiết diện và phương pháp tìm thiết diện

Thiết diện: là một đa giác được tạo bởi giao điểm của mặt phẳng (P) với tất cả các cạnh ( đoạn thẳng ) của hình chóp và mặt phẳng (P). 

Phương pháp tìm thiết diện:

Phương pháp 1: Tìm giao điểm của mặt phẳng với các đoạn thẳng cạnh bên, cạnh đáy của hình chóp

Phương pháp 2: Tìm giao tuyến của mặt phẳng với các mặt bên và mặt đáy của hình chóp và loại bỏ đoạn thẳng bên ngoài hình chóp

Bài tập minh họa

Bài 1: Cho hình chóp S.ABCD đáy là hình bình hành tâm O. Gọi M, N , I là ba điểm lấy trên AD , CD , SO . Tìm thiết diện của hình chóp với mặt phẳng (MNI)

bài giải

thiet dien

Trong (ABCD), gọi J = BD ∩ MN,  K = MN ∩ AB, H = MN ∩ BC

Trong (SBD), gọi  Q = IJ ∩ SB

 Trong (SAB), gọi  R = KQ ∩ SA

Trong (SBC), gọi  P = QH ∩ SC

Vậy : thiết diện là ngũ giác MNPQR

Bài 2: Cho hình chóp S.ABCD. Gọi M, N , P lần lượt là trung điểm lấy trên AB , AD và SC . Tìm thiết diện của hình chóp với mặt phẳng (MNP)

Bài giải

thiet dien 1

Trong (ABCD) , gọi  E = MN ∩ DC, F = MN ∩ BC

Trong (SCD) , gọi  Q = EP ∩ SD

Trong (SBC) , gọi  R = FP ∩ SB

Vậy : thiết diện là ngũ giác MNPQR

Bài 3: Cho tứ diện ABCD . Gọi H,K  lần lượt là trung điểm các cạnh AB, BC . Trên đường thẳng CD lấy điểm M sao cho KM không song song  với BD . Tìm thiết diện của  tứ diện với  mp (HKM ). Xét  2 trường hợp :

  1. M ở giữa C và D
  2. M ở ngoài đoạn CD 

Bài giải

thiet dien 2

M ở giữa C và D :

        Ta có : HK , KM là đoạn giao tuyến của (HKM) với (ABC) và (BCD)

        Trong (BCD), gọi  L = KM ∩ BD

        Trong (ABD), gọi N = AD ∩ HL

        Vậy : thiết diện là tứ giác HKMN

M ở ngoài đoạn CD:

        Trong (BCD), gọi  L = KM ∩ BD

        Vậy : thiết diện là tam giác HKL

Bài 3: Cho hình chóp S.ABCD. Gọi M, N lần lượt là trung điểm lấy trên AD và DC .Tìm thiết diện của hình chóp với mặt phẳng (MNE)

Bài giải

thiet dien 3

Trong (SCD), gọi  Q = EN ∩ SC

 Trong (SAD), gọi  P = EM ∩ SA

 Trong (ABCD), gọi  F = MN ∩ BC

 Trong (SBC), gọi  R = FQ ∩ SB

 Vậy : thiết diện là ngũ giác MNQRP

Bài 4: Cho hình chóp S.ABCD .Gọi M, N lần lượt là trung điểm SB và SC . Giả sử AD và BC không   song song  .

  1. Xác định giao tuyến của (SAD) và ( SBC)                                        
  2. Xác định thiết diện của mặt phẳng (AMN) với hình chóp S.ABCD

Bài giải

thiet dien 4

Xác định giao tuyến của (SAD) và ( SBC) :

        Trong (ABCD) , gọi  I = AD ∩ BC

        Vậy : SI = (SAD) ∩ ( SBC)

Xác định thiết diện của mặt phẳng (AMN) với hình chóp S.ABCD

        Trong (SBC) , gọi  J = MN ∩ SI

        Trong (SAD) , gọi  K = SD ∩ AJ

        Vậy : thiết diện là tứ giác AMNK

Bài 5: Cho hình chóp S.ABCD.Trong tam giác SBC lấy một điểm M  trong tam giác SCD lấy một điểm N.

  1. Tìm giao điểm của đường thẳng MN với mặt phẳng(SAC)
  2. Tìm giao điểm của cạnh SC với mặt phẳng (AMN)
  3. Tìm thiết diện của mặt phẳng (AMN) với hình chóp S.ABCD

Bài giải

thiet dien 5

Tìm giao điểm của đường thẳng MN với mặt phẳng(SAC):

  • Chọn mp phụ (SMN) ⊃ MN
  • Tìm  giao tuyến của (SAC ) và (SMN)

                Ta có :  S  là điểm chung của (SAC ) và (SMN)

                Trong (SBC), gọi  M’ = SM ∩ BC

                Trong (SCD), gọi  N’ = SN ∩ CD

                Trong (ABCD), gọi  I = M’N’ ∩ AC

                                    I ∈ M’N’   mà  M’N’ ⊂ (SMN)  → I ∈ ( SMN)

                                    I ∈ AC       mà  AC ⊂  (SAC) →  I ∈ (SAC)

                  → I  là điểm chung của (SMN ) và (SAC)

           →  ( SMN) ∩ (SAC) = SI

  • Trong (SMN), gọi  O = MN ∩ SI                                                                                                  

                                    O ∈ MN

                                    O ∈ SI   mà SI ⊂ ( SAC) →  O ∈ ( SAC)

        Vậy : O  = MN ∩ ( SAC )

Tìm giao điểm của cạnh SC với mặt phẳng (AMN) :

  • Chọn mp phụ (SAC) ⊃ SC
  • Tìm  giao tuyến của (SAC ) và (AMN)

                Ta có :    ( SAC) ∩ (AMN) = AO

  • Trong (SAC), gọi  E = AO ∩ SC                                                                                                   

                                    E ∈ SC

                                    E ∈ AO   mà AO ⊂ ( AMN) →  E ∈ ( AMN)

        Vậy : E  = SC ∩ ( AMN )

Tìm thiết diện của mặt phẳng (AMN) với hình chóp S.ABCD:

        Trong (SBC), gọi  P = EM ∩ SB

        Trong (SCD), gọi  Q = EN ∩ SD

        Vậy : thiết diện là tứ giác APEQ

Bài 6: Cho hình chóp S.ABCD. Gọi A’, B’ , C’ là ba điểm  lấy trên  các cạnh SA, SB, SC . Tìm thiết diện của hình chóp khi cắt bởi  mặt phẳng (A’B’C’)

Bài giải

thiet dien 6

Trong (ABCD), gọi  O = AC ∩ BD

        Trong (SAC), gọi  O’ = A’C’ ∩ SO

        Trong (SBD), gọi  D’ = B’O’ ∩ SD

        Có hai trường hợp :

  • Nếu D’  thuộc cạnh  SD thì thiết diện là tứ giác A’B’C’D’
  • Nếu  D’  thuộc không cạnh  SD thì

                            Gọi  E = CD ∩ C’D’

                                            F = AD ∩ A’D’

                                             → thiết diện là tứ giác A’B’C’EF

Bài tập áp dụng

0