Bài 73 trang 169 SBT Toán 9 Tập 1
Bài 8: Vị trí tương đối của hai đường tròn Bài 73 trang 169 Sách bài tập Toán 9 Tập 1: Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Gọi CD là tiếp tuyến chung ngoài của hai đường tròn (C ∈ (O), D ∈ (O’)) a. Tính số đo góc CAD b. Tính độ dài CD ...
Bài 8: Vị trí tương đối của hai đường tròn
Bài 73 trang 169 Sách bài tập Toán 9 Tập 1: Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Gọi CD là tiếp tuyến chung ngoài của hai đường tròn (C ∈ (O), D ∈ (O’))
a. Tính số đo góc CAD
b. Tính độ dài CD biết OA = 4,5cm, O’A = 2cm
Lời giải:
a. Kẻ tiếp tuyến chung tạ IA cắt CD tại M
Trong đường tròn (O) ta có:
MA = MC (tính chất hai tiếp tuyến cắt nhau)
Trong đường tròn (O’) ta có :
MA = MD (tính chất hai tiếp tuyến cắt nhau)
Suy ra : MA = MC = MD = 12 CD
Tam giác ACD có đường trung tuyến AM ứng với cạnh CD bằng nửa cạnh CD nên tam giác ACD vuông tại A
Suy ra :
b. Ta có :
MO là tia phân giác của góc (CMA) (tính chất hai tiếp tuyến cắt nhau)
MO’ là tia phân giác của góc (DMA) (tính chất hai tiếp tuyến cắt nhau)
Suy ra : MO ⊥ MO’ (tính chất hai góc kề bù)
Tam giác MOO’ vuông tại M có MA ⊥ OO’ (tính chất tiếp tuyến)
Theo hệ thức lượng trong tam giác vuông, ta có :
MA2 = OA.O’A = 4,5.2 = 9 => MA = 3 (cm)
Mà MA = 12 CD => CD = 2.MA = 2.3 = 6 (cm)
Các bài giải bài tập sách bài tập Toán 9 (SBT Toán 9)