25/04/2018, 21:56

Bài 5 trang 92 sgk Toán 11: Bài 2. Dãy số...

Bài 5 trang 92 sgk toán 11: Bài 2. Dãy số. Bài 5. Trong các dãy số sau, dãy số nào bị chặn dưới, dãy số nào bị chặn trên, dãy số nào bị chặn? Bài 5 . Trong các dãy số sau, dãy số nào bị chặn dưới, dãy số nào bị chặn trên, dãy số nào bị chặn? a) (u_n= 2n^2-1); b) ( ...

Bài 5 trang 92 sgk toán 11: Bài 2. Dãy số. Bài 5. Trong các dãy số sau, dãy số nào bị chặn dưới, dãy số nào bị chặn trên, dãy số nào bị chặn?

Bài 5. Trong các dãy số sau, dãy số nào bị chặn dưới, dãy số nào bị chặn trên, dãy số nào bị chặn?

a) (u_n= 2n^2-1);                     b) ( u_n=frac{1}{n(n+2)})

c) (u_n= frac{1}{2n^{2}-1});                        d) (u_n= sinn + cosn)
Hướng dẫn giải:
a) Dãy số bị chặn dưới vì (u_n= 2n^2-1≥ 1) với mọi (n in {mathbb N}^*)  và không bị chặn trên vì với số (M) dương lớn bất kì, ta có (2n^2-1 > M Leftrightarrow n > sqrt{frac{M+1}{2}}).
tức là luôn tồn tại ( n ≥   left [ sqrt{frac{M+1}{2}} ight ] + 1) để  (2 n^{2}- 1 > M)
b) Dễ thấy (u_n > 0) với mọi (n in {mathbb N}^*)  
Mặt khác, vì (n ≥ 1) nên (n^2≥ 1) và (2n ≥ 2).
Do đó (n(n + 2) =  n^2+ 2n ≥ 3), suy ra ( frac{1}{n(n+2)}) ( leq frac{1}{3}).
Vậy dãy số bị chặn (0 < u_n) (leq frac{1}{3}) với mọi  (n in {mathbb N}^*)  
c) Vì (n ≥ 1) nên (2n^2- 1 > 0), suy ra ( frac{1}{2n^{2}-1} > 0)
Mặt khác (n^2 ≥ 1) nên (2n^2≥ 2) hay (2n^2- 1≥ 1), suy ra ( u_{n}=frac{1}{2n^{2}-1} ≤ 1). 
Vậy (0 < u_n ≤ 1), với mọi (n in {mathbb N}^*), tức dãy số bị chặn.
d) Ta có: (sinn + cosn = sqrt 2sin(n +  frac{pi }{4})), với mọi (n). Do đó:
(-sqrt2 ≤ sinn + cosn ≤ sqrt2) với mọi (n in {mathbb N}^*)
Vậy (-sqrt 2  < u_n< sqrt 2), với mọi (n in {mathbb N}^*).
 

0